Appendix A

College Street Corridor Plan

Final Report

College Street Improvements
 Lacey, WA

Prepared by: WHPacific, Inc.

For:
City of Lacey 420 College Street SE Lacey, WA 98503

May 8, 2009

WHPacofic

Table of Contents

Purpose 3
Background 3
Existing Conditions 3
Previous Work 4
Summary 5
Alternative Analysis 5
Horizontal Alignment and Right of Way Limits 6
Neighborhood Circulation and Access 8
Improvement Phasing Plan 9
Public Process 9
Appendices 10
Tables
Table 1 - Alternative Combinations Considered 5
Table 2 - Scoring of Alternatives Considered 6
Table 3 - Estimated Right-of-Way Acquisition Costs (Excl. Roundabouts) 7
Table 4 - Full Parcel Acquisitions for Structures and/or Driveways Impacted (Excl. Roundabouts) 7
Table 5 - Estimated Right-of-Way Acquisition Costs - Recommended Alignment (Incl. Roundabouts) 7
Table 6 - Full Parcel Acquisitions - Recommended Alignment (Incl. Roundabouts) 8
Table 7 - Phasing Options with Phase Costs 9

Appendices

Appendix A - Alternatives Analysis Technical Memorandum
Appendix B - Horizontal Alignment and Right of Way Limits
Appendix C - Neighborhood Circulation and Access
Appendix D - Improvements Phasing Plan
Appendix E - Public Process
Open House Public Feedback Form
Open House Public Feedback Summary - Combined from Oct. 9 and Nov. 5

Appendix F - Bike Lane Technical Memorandum

Purpose

The purpose of this technical memorandum is to present an overview of findings and recommendations for the College Street corridor study work. The study started in February 2008 and concluded in November. The study consisted of the following elements:

- Alternatives Analysis - a technical memorandum to define the recommended dimensions of the cross-sectional elements;
- Horizontal Alignment and Right-of-Way Limits - a technical memorandum to define the recommended alignment;
- Neighborhood Circulation and Access - a technical memorandum to define the recommended changes to street access and/or driveway access;
- Improvements Phasing Plan - a technical memorandum to estimate project costs and define the recommended phasing of the improvements;
- Public Process - progress reports to the City of Lacey Transportation Committee and two public open houses; and
- Width Provided for Bicycles - a technical memorandum to expand the evaluation of the roadway width provided for bicycles in response to comments from the open houses.

The limits of the corridor study are shown in the vicinity below (Figure 1).

The Summary section of the report provides an overview of each element. Detailed technical memorandums for each element are included as appendices.

Figure 1 - Vicinity Map

Background

Existing Conditions

College Street from Lacey Boulevard to $37^{\text {th }}$ Avenue SE is a four-lane National Highway System (NHS) principal arterial with a general right-of-way width of 60 feet. The existing street width is approximately 45 feet from curb to curb. There are narrow sidewalks located along the corridor on each side of the street. The corridor is a built environment fronted by homes, small businesses, apartments, and schools.

College Street provides a primary north-south link for traffic, transit, pedestrians, and bicyclists within the City from south Thurston County to Interstate 5. The corridor currently carries 21,000 (2005 traffic count) and is projected to carry 32,000 vehicles per day by 2020 according to the Lacey Transportation Plan (College Street is identified as a Strategy Corridor in the Lacey Transportation Plan ${ }^{1}$). The corridor also provides local access to many homes fronting the street and provides access to several local streets and collectors.

[^0]Page - 4 -

Traffic is heavy along the corridor and congested during peak hours. Vehicles turning left from College Street to homes or local streets increase congestion by occupying the inside through-lane while waiting for breaks in traffic. There are approximately 130 driveways 24 T -intersections, and four 4 -way intersection collectively generating significant turn volumes. There are high-frequency collision locations along the corridor due to conflicts between turning vehicles and high volumes of through traffic. Narrow sidewalks, high volumes, and a lack of bike lanes discourage use by pedestrians and bicyclists. A lack of street amenities (i.e., planter strips/vegetation, decorative street lighting, street furniture) conflicts with community values articulated by City staff and City Council.

Previous Work

Previous study work resulted in a report titled, "College Street, Evaluation of Options", August 2005. This report documented a comprehensive alternatives analysis that scored and ranked ten options (nine build and one no-build) for improvements to College Street that addressed the corridor needs. The corridor needs were grouped into three main categories:

- Preserve/enhance community values;
- Optimize traffic operations and safety; and
- Optimize cost.

After considering options that ranged from no-build to adding a frontage road that widened the overall right-of-way footprint to 121 feet, the report recommended Option 9 as the preferred option. This option best provides a blend of corridor capacity, neighborhood connectivity, non-motorized uses, and corridor aesthetics. The cross-section included a planted center median to control access and provide space for left-turn lanes at key intersections; wide sidewalks with tree wells to promote walk-ability; space for commuting bicycles; and roundabouts at major intersections to provide intersection control. The overall right-of-way width of 72 feet widens to 76 feet at left-turn lane locations.

Option 9 scored best by performing very well for "optimizing traffic operations and safety" by providing two through-lanes, controlling access, and providing left turns at key intersections; performing well in "preserving/enhancing community values" by providing space for commuting bicycles, wide sidewalks with tree wells, and planted medians; and performing average in "optimizing cost".

The report concluded with a recommendation to further refine Option 9 by considering the following:

- Appropriate locations for median breaks, u-turns, and roundabouts.
- Potential driveway consolidation and/or elimination to reduce the number of conflict points.
- Fine tuning of the cross-sectional elements to minimize impacts to adjacent properties.
- Locations and amounts of corridor aesthetics and pedestrian amenities.
- Appropriate (if any) locations for mid-block crossings that link pedestrian oriented land uses.

The elements included in this corridor study answered these questions. It provides the City with a basis for long range planning in the area and presents a vision for improvements to the corridor. In the near term, the study provides the City a tool to steer decision making in the area - land use, development site plans, right of way acquisition, etc. While the study presents specific recommendations, there is room for flexibility to make refinements as individual projects progress toward realization. As refinements are considered, the study will provide the basic framework and the foundational vision for the corridor.

Page - 5 -

Summary

The following summarizes the work from each of the study elements - Alternative Analysis, Horizontal Alignment and Right of Way Limits, Neighborhood Circulation and Access, Improvement Phasing Plan, Public Process, and Width Provided for Bicycles.

Alternative Analysis

The purpose of the Alternative Analysis was to evaluate and recommend a specific dimension for each cross-sectional identified in Option 9 from the previous study work. We evaluated four alternatives combinations of cross-sectional widths (see Table 1) against the following criteria; operations and safety, adherence to federal standards for NHS routes, right-of-way width and cost, eligibility for grant funding, and community values. Based on these criteria, the "Recommended" alternative performs best (see Figure $2)$.

The Recommended Alternative uses 11 -foot lanes as a practical minimum lane width (since 10 -foot lanes provide no buffer for trucks and/or buses considering width from outside

Figure 2 - Recommended Alternative of mirror to outside of mirror). It provides a widened outside lane (14 feet) to provide space for commuting bicycles. This approach to accommodating bicycles decreases the right of way impacts. The planted median is a consistent 11 feet along the corridor to accommodate the possibility of future left lanes.

The biggest benefit of this alternative is the minimal right-of-way width. One drawback is it provides less space for bicycles than the other three alternatives.

Table 1
Alternative Combinations Considered

Alternative	Median	Lanes	Space for Bikes	Planter	Tree Well	Sidewalk	Total R/W
Option 9	$6^{\prime}-10^{\prime}$	10^{\prime}	3^{\prime}	N / A	Yes	10^{\prime}	$72^{\prime}-76^{\prime}$
NHS/TIB Stds.	12^{\prime}	12^{\prime}	5^{\prime}	N / A	Yes	10.5^{\prime}	91^{\prime}
Lacey Stds.	12^{\prime}	11^{\prime}	5^{\prime}	6.5	No	8^{\prime}	9^{\prime}
Recommended	11^{\prime}	11^{\prime}	3^{\prime}	N / A	Yes	10.5^{\prime}	8^{\prime}

1. The median tapers to 10 feet at left turn locations.

We qualitatively scored each of the alternatives against the following criteria; operations and safety, adherence to standards, right-of-way width and cost, eligibility for grant funding, and community values. The scoring is shown below in Table 2.

Page - 6-

Table 2
Scoring of Alternatives Considered ${ }^{1}$

Alternative	Operations/ Safety	Standards	R/W Width and Cost	Grant Funding	Community Values	Total Score
Option 9	2	2	4	3	3	14
NHS/TIB Stds.	4	4	2	4	2	16
Lacey Stds.	3	4	1	4	2	14
Recommended	3	4	3	3	3	16

1. Alternatives are scored from 1 (lowest) to 4 (highest) in each criterion.

Although the "NHS/TIB Standards" alternative scores equally well with the "Recommended" alternative, the "Recommended" alternative is preferred because of the lesser right-of-way width. The "Recommended" alternative is shown above in Figure 2.

Horizontal Alignment and Right of Way Limits

We evaluated alternative horizontal alignments to determine the least cost alignment considering construction costs and right of way impacts (measured by estimated acquisition costs). The cost differences between alternative alignments are significantly higher for right-of-way acquisition than pavement reconstruction. Therefore, the recommended horizontal alignment is based solely on minimizing right-of-way acquisition costs. We compared costs for three horizontal alignments centered on existing right-of-way; aligned against the westerly right-of-way; and aligned against the easterly right-of-way. To further refine our comparison, we broke the corridor into four segments. The segment limits correspond to the location of the proposed roundabout locations at $29^{\text {th }}$ Avenue SE, $22^{\text {nd }}$ Avenue SE, and $16^{\text {th }}$ Avenue SE (see Figure 3). Breaking the segments at the roundabout locations allows for transitions between

Figure 3 - Segment Map alternative alignments. Therefore, we are not limited to one alignment for the entire corridor.

The estimated costs for right-of-way acquisition for the three horizontal alignments are shown in Table 3. The numbers of full parcel acquisitions are shown in Table 4. Note these numbers exclude impacts from the three roundabouts, since the impacts from roundabouts are mostly independent of the alternative alignments.

We recommend the following horizontal alignments by segment to minimize right-of-way acquisition costs. These alignments are shown in bold in Tables 3 and 4. Figure 4 graphically depicts the horizontal alignment by segment.

Page - 7 -

- Segment 1 - Aligned against the easterly right-of-way line;
- Segment 2 - Aligned against the westerly right-of-way line;
- Segment 3 - Aligned against the easterly right-of-way line; and
- Segment 4 - Aligned against the westerly right-of-way line.

The total cost and the total number of full parcel acquisitions for the recommended alignment are shown in Tables 5 and 6 , respectively. These numbers do include impacts for the three roundabouts. Therefore, the totals in Tables 5 and 6 differ from the totals from Tables 3 and 4.

Figure 4 - Horizontal Alignment by Segment

Table 3
Estimated Right-of-Way Acquisition Costs (Excl. Roundabouts)

Segment	Aligned on the Centerline	Aligned Against the Westerly Right-of-Way	Aligned Against the Easterly Right-of-Way
1	$\$ 1,157,827$	$\$ 3,046,962$	$\$ 864,618$
2	$\$ 4,942,902$	$\$ 1,934,930$	$\$ 7,324,351$
3	$\$ 2,417,583$	$\$ 1,665,844$	$\$ 1,292,543$
4	$\$ 3,687,493$	$\$ 2,568,042^{1}$	$\$ 3,570,840$

1. Assumes a full parcel acquisition is not required for the apartment buildings at 1510 College Street SE .

Table 4
Full Parcel Acquisitions for Structures and/or Driveways Impacted (Excl. Roundabouts)
$\left.\begin{array}{cccc}\hline \text { Segment } & \begin{array}{c}\text { Aligned on the } \\ \text { Centerline }\end{array} & 2 & \begin{array}{c}\text { Aligned Against the } \\ \text { Westerly Right-of-Way }\end{array}\end{array} \begin{array}{c}\text { Aligned Against the } \\ \text { Easterly Right-of-Way }\end{array}\right]$

1. Assumes a full parcel acquisition is not required for the apartment buildings at 1510 College Street SE.

Table 5
Estimated Right-of-Way Acquisition Costs - Recommended Alignment (Incl. Roundabouts)

Segment	Estimated R/W Costs
1	$\$ 1.50 \mathrm{M}$
2	$\$ 3.04 \mathrm{M}$
3	$\$ 1.91 \mathrm{M}$
4	$\$ 3.14 \mathrm{M}^{1}$
TOTAL	$\$ 9.59 \mathrm{M}^{1}$

1. Assumes a full parcel acquisition is not required for the apartment buildings at 1510 College Street SE.

Page-8-

Table 6
Full Parcel Acquisitions - Recommended Alignment (Incl. Roundabouts)

Segment	Number of Full Parcel Acquisitions
1	3
2	8
3	5
4	7^{1}

1. Assumes a full parcel acquisition is not required for the apartment buildings at 1510 College Street SE.

The total right-of-way costs shown in Table 5 are preliminary and they are represented in 2008 dollars. We recommend $\$ 13.0 \mathrm{M}$ as a reasonable planning level estimate at this stage of project development.

Neighborhood Circulation and Access Strategic Corridor

The City of Lacey recognizes College Street as a Strategy Corridor. Strategy Corridors are major arterials in dense urban areas where traditional approaches to address congestion such as roadway widening are not practical or conflict with community values. Traditional performance measures, such as Level of Service, do not apply to Strategy Corridors because they would not allow increased densities in the urban core.

Neighborhood Circulation and Access Management Plan (NCAMP)

The NCAMP recommends a raised median to manage access. Access management is a tool to reduce traffic congestion and reduce traffic collisions. The intent of access management is to provide access for abutting properties while preserving the flow of traffic. The NCAMP also identifies measures recommended for College Street as a Strategy Corridor. The recommendations include identifying roundabout locations, median break locations (allowing for left turns), street grid connections to increase

Figure 5 - Neighborhood Circulation Access \& Management Plan access to alternate routes, and driveways consolidations. Figure 5 shows the recommended roundabouts, median breaks, and street grid connections.

Traffic Analyses

Traffic analysis was conducted to evaluate how the recommended improvements will impact traffic operations in 2030. The results show the recommended access control measures will not adversely affect neighborhoods, although left turn movements at some neighborhoods will be difficult in the PM peak hour. The roundabouts will operate well under expected future volumes on College Street.

Findings

The proposed improvements for the College Street Corridor from $37^{\text {th }}$ Avenue SE to Lacey Boulevard comply with Strategic Corridor requirements. The proposed access management shown on the

Page - 9 -

Neighborhood Circulation and Access Management Plan strikes a reasonable balance between throughput operations and neighborhood access. Driveway revisions can maintain access while improving safety by reducing the number of conflict points. Potential grid connections can further enhance neighborhood access and circulation by providing access to other north-south arterials, such as Golf Club Road SE, Judd Street SE, and Ruddell Road SE. Some stop control intersections will experience delays making left turns in the PM peak hour due to heavy volumes on College Street. Alternatively, vehicles can turn right and make a u-turn at the nearest roundabout or median break. Left-turns from side streets are more likely that during off peak periods. The roundabouts operate well in the build out year.

Improvement Phasing Plan

We evaluated alternative construction phasing options for improvements to College Street from $37^{\text {th }}$ Avenue SE to Lacey Boulevard. We based the phasing options based on operational benefit and practical project size. First, we gave priority to projects providing more operational benefit. Second, we defined project limits to keep the costs for individual projects roughly between $\$ 1 \mathrm{M}$ and $\$ 5 \mathrm{M}$ (in 2008 dollars), specifically to match a range of project sizes typically funded by grant opportunities. We developed two viable options described below. Note that any of the identified projects could be increased or decreased in scope to match funding opportunities.

Both approaches construct the roundabouts first, and the three roundabouts are ordered by highest entering volumes ($22^{\text {nd }}$ Avenue SE first, $29^{\text {th }}$ Avenue SE second, and $16^{\text {th }}$ Avenue SE third). The roundabouts are constructed first to provide u-turn opportunities for properties before center medians are constructed and access points are modified. The segments between roundabouts are ordered from north to south, since the traffic volumes are higher for the northerly segments.

Option 1 has seven phases ranging in cost from $\$ 2.1 \mathrm{M}$ to $\$ 5.7 \mathrm{M}$. Option 2 has five phases ranging in cost from $\$ 3.1 \mathrm{M}$ to $\$ 7.5 \mathrm{M}$.

Table 7
Phasing Options with Phase Costs

Option 1			Option 2		
Phase	Cost ${ }^{1}$	Description	Phase	Cost ${ }^{1}$	Description
Phase 1	\$2,050,000	$22^{\text {nd }}$ Ave RAB	Phase 1	\$4,990,000	$22^{\text {nd }} \& 29^{\text {th }}$ RABs
Phase 2	\$2,940,000	$29^{\text {th }}$ Ave RAB	Phase 2	\$7,463,000	$16^{\text {th }}$ RAB/Lacey to $16^{\text {th }}$
Phase 3	\$3,100,000	$16^{\text {th }}$ Ave RAB	Phase 3	\$3,060,000	$16^{\text {th }}$ to $22^{\text {nd }}$
Phase 4	\$4,363,000	Lacey to $16^{\text {th }}$	Phase 4	\$5,736,000	$22^{\text {nd }}$ to $29^{\text {th }}$
Phase 5	\$3,060,000	$16^{\text {th }}$ to $22^{\text {nd }}$	Phase 5	\$4,754,000	$29^{\text {th }}$ to $37^{\text {th }}$
Phase 6	\$5,736,000	$22^{\text {nd }}$ to $29^{\text {th }}$	----	----	
Phase 7	\$4,754,000	$29^{\text {th }}$ to $37^{\text {th }}$	----	----	
TOTALS	\$26,003,000			\$26,003,000	

1. Costs are in 2008 dollars.

The total phase costs (right of way and construction) shown in Table 7 are preliminary and they are represented in 2008 dollars. We recommend $\$ 30 \mathrm{M}$ as a reasonable planning level estimate at this stage of project development.

Public Process

The public process included progress reports to the City Transportation Committee and two open houses. The progress reports to the Transportation Committee occurred after each step of the study - Alternative Analysis, Horizontal Alignment and Right of Way, Neighborhood Circulation and Access, and Improvement Phasing Plan. These reports occurred on April 11, 2008, June 13, 2008, and September 12, 2008 (Access and Phasing), respectively.

Page - 10 -

At the conclusion of work to prepare the four technical memorandums listed above, the City held an open house at Mountain View Elementary School on Thursday, October 9, 2008 from 4:30 p.m. to 7:30 p.m. The open house was hosted by City staff and WHPacific staff. There were roll plot exhibits placed on table spread throughout the cafeteria area. The exhibits depicted results from each of the four technical memorandums prepared for the study. Citizens were able to review the material and ask questions. Citizens were also asked to complete a feedback form (see Appendix E).

The October 9 open house was very well attended - 81 persons completed feedback form. Based on these attendance numbers, the City Council requested a second open house scheduled on a different day of the week. The second open house was held on Wednesday, November 5, 2008 from 4:30 p.m. to 7:30 p.m. During the November 5 open house, 45 persons completed the feedback form.

The following are key points from the public feedback:

- Most persons learned of the meeting through direct mailing.
- Over 70% of respondents live/work in the vicinity of College Street. Nearly 95% of respondents live/work near College Street or commute along College Street.
- The majority of respondents rated congestion below average or poor for vehicles, bicycles, and pedestrians.
- Over 80% of respondents generally agreed with the plan.
- Respondents generally agreed with the order of projects in the phasing plan.

Detailed results from the feedback forms are included in Appendix E.

Responses to Public Process

As a result of the input received during the public process, we made the following refinements to the planned improvements:

- Circulation Routes: We added the following connections to enhance the neighborhood connections:
- Connect $18^{\text {th }}$ Ave SE to $22^{\text {nd }}$ Ave SE along a new route immediately east of Mountain View Elementary.
- Connect Judd Street between $24^{\text {th }}$ Ave SE and $25^{\text {th }}$ Ave SE.
- Design Flexibility: We committed to flexibility during the final design to minimize specific project impacts at spot locations.
- Space for Bicycles: We prepared a technical memorandum to document a cost/benefit evaluation of providing additional space for bicycles. The memorandum concludes the added costs of $\$ 1.7 \mathrm{M}$ are greater than the benefits provided by additional space for bicycles, since it is anticipated bicyclists will be primarily Type A users (i.e., commuters) and the nearby ChehalisWestern Trail provides an alternative route for bicyclists.

Appendices

Appendix A - Alternatives Analysis Technical Memorandum
Appendix B - Horizontal Alignment and Right of Way Limits
Appendix C - Neighborhood Circulation and Access
Appendix D - Improvements Phasing Plan
Appendix E - Public Process
Open House Public Feedback Form

Open House Public Feedback Summary - Combined from Oct. 9 and Nov. 5
Appendix F - Bike Lane Technical Memorandum

Appendix A

TECHNICAL MEMORANDUM

Date: April 11, 2008. Rev 4/17/09

To: Martin Hoppe, P.E., PTOE
Company: City of Lacey
Phone: 360.438.2681
Fax: 360.456.7799
Address: 420 College Street SE
Lacey, WA 98509-3400
\qquad

RE: Alternative Analysis Technical Memorandum

From: Scott Sawyer, P.E.
Title: Senior Project Manager
Phone: 360.918 .5305
Fax: 360.754.1195

Project\#:	34709
Project	College Street Improvement Report
Name:	

Purpose

The purpose of this technical memorandum is to present ranges of dimensions for roadway crosssectional elements for College Street from $37^{\text {th }}$ Avenue SE to Lacey Boulevard; median width, left-turn lane width, through-lane width, space for bicyclists, planter/tree well width, and sidewalk width (clear width); and recommend a proposed cross-section for College Street for use in subsequent preliminary and final design.

Summary

We scored four alternatives against the following criteria; operations and safety, adherence to standards, right-ofway width and cost, eligibility for grant funding, and community values. Based on these criteria, the "Recommended" alternative performs best (see Figure 1).

This alternative uses 11 -foot lanes as a practical minimum width (since the 10 foot lanes provide no buffer for trucks

Figure 1 - Recommended Alternative and/or buses considering width from outside of mirror to outside of mirror). It uses 14-foot outside lanes with space for bicyclists to decrease the impact to right-of-way width. The planted median is a consistent 11 feet to accommodate the possibility of future lane turn lanes. A reduced median width could still be considered at spot locations along the corridor.

Page - 2 -

The biggest benefit of this alternative is the minimal right-of-way width. One drawback is lesser space provided for bicyclists. Since the width provided is less than 5 feet wide, the project will not score bike route points (2 points maximum) on a Transportation Improvement Board (TIB) grant application under the Urban Arterial Program (UAP). The bike points fall under the Sustainability criteria (15 points maximum). There are 100 points available on the UAP grant application, so bike points are only two percent of the available points.

Background

Existing Conditions

College Street from Lacey Boulevard to $37^{\text {th }}$ Avenue SE is a four-lane National Highway System (NHS) principal arterial with a general right-of-way width of 60 feet. The existing street width is approximately 45 feet from curb to curb. There are narrow sidewalks located along the corridor on each side of the street. The corridor is a built environment fronted by homes, small businesses, apartments, and schools.

College Street provides a primary north-south link for traffic, transit, pedestrians, and bicyclists within the City from south Thurston County to Interstate 5. The corridor currently carries 21,000 (2005 traffic count) and is projected to carry 32,000 vehicles per day by 2020 according to the Lacey Transportation Plan (College Street is identified as a Strategy Corridor in the Lacey Transportation Plan ${ }^{1}$). The corridor also provides local access to many homes fronting the street and provides access to several local streets and collectors.

Traffic is heavy along the corridor and congested during peak hours. Vehicles turning left from College Street to homes or local streets increase congestion by occupying the inside through-lane while waiting for breaks in traffic. There are approximately 130 driveways 24 T-intersections, and four 4 -way intersection collectively generating significant turn volumes. There are high-frequency collision locations along the corridor due to conflicts between turning vehicles and high volumes of through traffic. Narrow sidewalks, high volumes, and a lack of bike lanes discourage use by pedestrians and bicyclists. A lack of street amenities (i.e., planter strips/vegetation, decorative

Figure 2 - Vicinity Map street lighting, street furniture) conflicts with community values articulated by City staff and City Council.

Previous Work

Previous study work resulted in a report, "College Street, Evaluation of Options", August 2005. This report documented a comprehensive alternatives analysis that scored and ranked ten options (nine build and one no-build) for improvements to College Street that addressed the corridor needs. The corridor needs were grouped into three main categories:

[^1]Page - 3 -

- Preserve/enhance community values;
- Optimize traffic operations and safety; and
- Optimize cost.

After considering options that ranged from no-build to adding a frontage road that widened the overall right-of-way footprint to 121 feet, the report recommended Option 9 as the preferred option. This option best provides a blend of corridor capacity, neighborhood connectivity, non-motorized uses, and corridor aesthetics. The cross-section included a planted center median to control access and provide space for left-turn lanes at key intersections; wide sidewalks with tree wells to promote walk-ability; space for bicyclists; and roundabouts at major intersections to provide intersection control. The overall right-ofway width of 72 feet widens to 76 feet at left-turn lane locations.

Option 9 scored best by performing very well for "optimizing traffic operations and safety" by providing two through-lanes, controlling access, and providing left turns at key intersections; performing well in "preserving/enhancing community values" by providing space for bicyclists, wide sidewalks with tree wells, and planted medians; and performing average in "optimizing cost". The Option 9 cross-section is shown graphically in Figure 3.

The report concluded with a recommendation to

Figure 3-Option 9 Alternative further refine Option 9 considering the following:

- Appropriate locations for median breaks, U-turns, and roundabouts.
- Potential driveway consolidation and/or elimination to reduce the number of conflict points.
- Fine tuning of the cross-sectional elements to minimize impacts to adjacent properties.
- Locations and amounts of corridor aesthetics and pedestrian amenities.
- Appropriate (if any) locations for mid-block crossings that link pedestrian oriented land uses.

This technical memorandum addresses the third bullet above. Subsequent technical memorandums will address other bullets.

Alternatives Analysis

Range of Dimensions

The work from the report, "College Street, Evaluation of Options", August 2005 set the cross-sectional elements that comprise the preferred option, Option 9. These elements are raised median, left-turn lane, through-lanes, space for bicyclists, tree wells/planter strips, and sidewalks. During presentation of the report to the Lacey City Council, the Council agreed with Option 9 as the recommended option, but asked for further consideration of the specific widths shown for the cross-sectional elements. Below are descriptions for each element, the range of dimensions considered, and evaluations for each element considering the following:

- Operations/Safety
- Design Standards (City of Lacey standards ${ }^{2}$ and/or AASHTO Greenbook guidance ${ }^{3}$)
- Cost/Right-of-Way Width
- Grant Funding Requirements
- Community Values

Median

Description: The raised median is intended to provide access control through the corridor to manage the number of left turn movements and the associated number of conflict points between vehicles. More access control will benefit traffic operations (increasing the throughput of vehicles), and reduce collisions (by reducing conflicting movements). The width of the median is driven by two factors; (1) minimum area practical to provide for planting, and (2) compatibility with the width of left-turn lanes.

Range of Dimensions: The minimum width considered is six feet (edge of lane to edge of lane, which yields one foot of planting area after subtracting one foot of shy distance, six inches of curb, and one foot of maintenance strip on each side). The maximum width considered is 12 feet (similarly yields 7 feet of planting area). The minimum width of six feet is based on providing four feet of raised median width for pedestrian refuge (the minimum refuge width for wheelchairs ${ }^{4}$). The maximum width is based on the City of Lacey standard for median width. ${ }^{5}$

Benefits/Drawbacks: Each of the median widths control access, thereby improving operations and safety. There are no grant funding requirements tied specifically to median width. A narrow median reduces costs (less material) and right-of-way width. The wider median increases costs and right-of-way width, but eliminates the need for tapers at left-turn locations. The wider median also provides greater flexibility in the future for changes (i.e., more median breaks and/or left turn pockets) without additional widening to the outside. The narrow median does not provide sufficient width for planting. A minimum of three feet is needed for planting, which requires a median width of eight feet considering shy distance, curbs, and maintenance curbs. The wider median does provide space for planting, which promotes community values through improved aesthetics.

Left-Turn Lane and Through-Lanes

Description: The left-turn lanes are provided at median breaks at key intersections for left-turn and u-turn access. These key intersections are stop-controlled for the side street. They are located between roundabouts.

The through-lanes provide throughput for the corridor and provide access to local destination within the study area.
${ }^{2}$ City of Lacey, Development Guidelines and Public Works Standards, July 2005.
${ }^{3}$ American Association of State Highway Transportation Officials (AASHTO), Policy on Geometric Design of Highways and Streets, $5{ }^{\text {th }}$ Edition, 2004.
${ }^{4}$ AASHTO, Policy on Geometric Design of Highways and Streets, $5{ }^{\text {th }}$ Edition, 2004, Page 366.
${ }^{5}$ City of Lacey, Development Guidelines and Public Works Standards, July 2005, Street Design Arterial - DWG NO. 4-2.2.

Range of Dimensions: The minimum left-turn width considered is 10 feet based on AASHTO Greenbook guidance for an urban arterial. ${ }^{6}$ The maximum left-turn width considered is 12 feet based on City of Lacey standards. ${ }^{7}$

The minimum through-lane width considered is 10 feet based on AASHTO Greenbook guidance for an urban arterial. ${ }^{8}$ However, the guidance states 10 feet "may be used in highly restricted areas having little or no truck traffic." The maximum width considered is 12 feet based on AASHTO Greenbook guidance for maximum through-lane width for an urban arterial. ${ }^{9}$

The lanes widths presume the use of a bike lane. Without a bike lane, the outside lane width should be increased to better accommodate turning vehicles. If the outside lane isn't widened, it will require a larger curb return radius, which is counter to encouraging pedestrian users.

Benefits/Drawbacks: The narrow lane widths will slightly increase side-swipe collisions. Based on AASHTO Greenbook guidance, ten feet is appropriate for arterials with little to no truck traffic. There is sufficient truck volumes to exclude the use of 10 -foot lanes since they provide no buffer between adjacent lanes for trucks (or buses) when considering their width from outside of mirror to outside of mirror. The narrow width does not meet minimum width for left-turn lanes and through-lanes per AASHTO Greenbook guidance (considering trucks) ${ }^{10}$, and it does not meet City of Lacey standards. ${ }^{11}$ The narrow lane widths reduce cost and right-of-way width. All of the lane widths meet requirements for grant funding, since they meet AASHTO Greenbook guidance. The narrow lane widths may have a slight positive affect on community values since it will tend to reduce speeds and reduce street width at pedestrian crossings, making the corridor friendlier to non-motorized users.

Space for Bicyclists

Description: Delineated space for bicyclists promotes non-motorized uses. It is expected that most bicyclists will be Type A users (advanced or experienced riders), as defined by the AASHTO, Guide for the Development of Bicycle Facilities. ${ }^{12}$

Range of Dimensions: The widths considered for bicylcists match the classes of bike lanes used by the City of Lacey. ${ }^{13}$ A Class III is a non-striped lane created by widening the outside travel lane approximately three feet (i.e., lane width of 14 feet). A Class 2.5 is a three-foot striped bike route, an enhanced Class III bike route used by the City. A Class II is a five-foot striped bike lane. The Lacey Transportation Plan calls for a Class II bike lane on College Street. ${ }^{14}$ Therefore, the minimum width

[^2]Page - 6 -
considered is three feet and the maximum width considered is five feet. This range of widths also generally complies with AASHTO guidelines. ${ }^{15}$

Benefits/Drawbacks: Because bicycles will be closer to cars, the narrow width may slightly reduce throughput by decreasing speeds in the outside lane, and may slightly increase side-swipe collisions (between cars, and between cars and bicycles). However, data suggests the difference in operations and safety may not be distinguishable. ${ }^{16}$ Most vehicle/bicycle collisions are related to maneuvers at intersections. ${ }^{17}$ The narrow width meets City of Lacey standards and AASHTO Greenbook guidance. The narrow width will reduce costs and right-of-way width. The narrow width does not meet the 5 -foot minimum requirement for bike route points (2 points maximum) for UAP grant funding from TIB. ${ }^{18}$ The bike route points fall under the Sustainability criteria (15 points maximum). There are 100 points maximum on the UAP grant application, so bike route points are only two percent of the available points. The narrow width still meets requirements for federal funding and other state grants since it meets AASHTO Greenbook and AASHTO guidance. The wider lane may be slightly better at promoting community values associated with non-motorized uses.

Tree Wells/Planter Strips and Sidewalks

Description: The tree wells (or planter strips) provide plantings to improve the corridor aesthetic and provide a buffer between the travel lanes and pedestrians, which dramatically increases comfort for pedestrians.

The sidewalks promote non-motorized uses in the corridor.
Range of Dimensions: The width of a tree well for the City of Lacey is four feet with an offset from back of curb for constructability. ${ }^{19}$ We did not consider other tree well widths since the City uses a standard grate size so parts are interchangeable, improving maintenance efficiency. Coupled with the tree well, we used a total sidewalk width of 10 feet, providing five feet of clearance at the tree wells.

We did consider a planter strip instead of the tree well. We considered a planter strip width of 6.5 feet per City of Lacey standards. ${ }^{20}$ Coupled with the planter strip, we considered a sidewalk width of eight feet per City of Lacey standards. ${ }^{21}$ This yields a total width of 14.5 feet compared to a sidewalk width of 10.5 feet.

Benefits/Drawbacks: Neither of the combinations (tree well/sidewalk and planter strip/sidewalk) has a distinguishable affect on operations or safety. Both the tree well width and the planter strip width meet AASHTO Greenbook guidance. The tree well is based on a City of Lacey standard width; however, the

[^3]Page - 7 -
standard for an arterial calls for a planter strip and sidewalk. The tree well/sidewalk width is narrower, so it reduces costs and right-of-way width. Both combinations meet grant funding requirements. The planter strip/sidewalk combination better promotes community values by providing more space for nonmotorized uses and increasing the amount of planting.

Alternative Combinations Considered

Based on the range of dimensions for the cross-sectional elements described above, we developed the following alternatives (see Table 1 for specific dimensions).

Option 9

Description: This alternative matches exactly Option 9 from the previous study report ${ }^{22}$ (see Figure 3 above).

Benefits/Drawbacks: The biggest benefit of this alternative is the minimal right-of-way width (72 feet to 76 feet). The biggest drawback is the use of 10 -foot lanes, since they provide no buffer for trucks and/or buses considering width from outside of mirror to outside of mirror. This excludes this alternative as operationally impractical.

This alternative has operational deficiencies and may adversely impact safety and capacity in the corridor. The narrow lanes will increase side-swipe collisions. The 10 -foot lane widths are less than City of Lacey standards, and the 3-foot bike routes preclude bike route points (2 points maximum) under UAP grant funding from TIB. The alternative provides the minimum right-of-way width and cost of the four alternatives considered. Narrower lanes at pedestrian crossings will help promote non-motorized uses.

NHS/TIB Standards

Description: This alternative takes the standard width for each cross-sectional element as dictated by the AASHTO Greenbook (a 12 -foot lane width is used as the "desirable" lane width ${ }^{23}$) and TIB policy (5-foot bike lanes).

Benefits/Drawbacks: This alternative does not have a clear biggest benefit. The biggest drawback is the extra right-of-way width due to the 12 -foot lanes.

This alternative will tend to increase speeds, which will slightly increase throughput and may increase overall collision and/or increase collision severity. The consistent median width eliminates changes in direction caused by the narrow median from Option 9. Each of the elements meets AASHTO Greenbook guidance and TIB standards, making it eligible for all grants. It creates the maximum right-of-way width and cost of the four alternatives considered. The medians, tree wells, and wide sidewalks promote community values, but the wider lanes create a less inviting environment for non-motorized users.

City of Lacey Standards

Description: This alternative takes the standard width for each cross-sectional element as dictated by City of Lacey standards, including use of a planter strip. ${ }^{24}$

[^4]Page - 8 -

Benefits/Drawbacks: The biggest benefit of this alternative is the added non-motorized amenities created by the planter strip. Conversely, the biggest drawback is the extra right-of-way width due to the planter strip.

This alternative provides a reasonable balance between operational/safety goals and community value goals. It exactly matches City of Lacey standards. It also meets AASHTO Greenbook guidance and TIB standards, making it eligible for all grants. It is the most expensive of the four alternatives with the widest right-of-way (95 feet). The median, planter strip, and wide sidewalk promote community values.

Recommended

Description: This alternative uses 11 -foot lanes as a practical minimum width (since the 10 -foot lanes provide no buffer for trucks and/or buses considering width from outside of mirror to outside of mirror). It provides 14 -foot outside lanes to provide space for bicyclists. The lesser width decreases the impact to right-of-way width. The planted median is a consistent 11 feet, but a reduced median width could still be considered at spot locations along the corridor.

Benefits/Drawbacks: The biggest benefit of this alternative is the minimal right-of-way width (the least right-ofway, excluding Option 9 since 10 -foot lanes are operationally impractical). The drawback is the lesser space for bicyclists.

Similar to the "Lacey Standards" alternative, this alternative provides a reasonable balance between operational/safety goals and community

Figure 4 - Recommended Alternative value goals. The alternative meets AASHTO Greenbook guidance and City of Lacey standards (except for median width). It does not include a planter strip, but tree wells and wide sidewalks promote community values. It is eligible for all grants, except TIB grant funding as stated above.

Table 1
Alternative Combinations Considered

Alternative	Median	Lanes	Space for Bikes	Planter	Tree Well	Sidewalk	Total R/W
Option 9	$6^{\prime}-10^{\prime}$	10^{\prime}	3^{\prime}	N / A	Yes	10^{\prime}	$72^{\prime}-76^{\prime}$
NHS/TIB Stds.	12^{\prime}	12^{\prime}	5^{\prime}	N / A	Yes	10.5^{\prime}	91^{\prime}
Lacey Stds.	12^{\prime}	11^{\prime}	5^{\prime}	6.5	No	8^{\prime}	9^{\prime}
Recommended	11^{\prime}	11^{\prime}	3^{\prime}	N / A	Yes	10.5^{\prime}	8^{\prime}

1. The median tapers to 10 feet at left turn locations.

Recommendation

We qualitatively scored each of the alternatives against the following criteria; operations and safety, adherence to standards, right-of-way width and cost, eligibility for grant funding, and community values. The scoring is shown below in Table 2.

Table 2
Scoring of Alternatives Considered ${ }^{1}$

Alternative	Operations/ Safety	Standards	R/W Width and Cost	Grant Funding	Community Values	Total Score
Option 9	2	2	4	3	3	14
NHS/TIB Stds.	4	4	2	4	2	16
Lacey Stds.	3	4	1	4	2	14
Recommended	3	4	3	3	3	16

1. Alternatives are scored from 1 (lowest) to 4 (highest) in each criterion.

Although the "NHS/TIB Standards" alternative scores equally well with the "Recommended" alternative, the "Recommended" alternative is preferred because of the lesser right-of-way width. The "Recommended" alternative is shown above in Figure 4.

Attachments

1. Recommended Alternative
2. Option 9 Alternative

Appendix B

Technical Memorandum

Date: July 29, 2008 Rev. 4/17/09

Horizontal Alignment and Right of RE: Way Limits

Purpose

The purpose of this technical memorandum is to present a recommended horizontal alignment for College Street from $37^{\text {th }}$ Avenue SE to Lacey Boulevard. The recommendation is based on a cost evaluation of pavement construction (Crown/CrossSlope Analysis) and right-of-way impacts (Right-of-Way Analysis).

Summary

We evaluated alternative horizontal alignments by determining cost estimates for pavement reconstruction and right-of-way acquisition. The cost differences between alternative alignments are significantly higher for right-of-way acquisition than pavement reconstruction. Therefore, the recommended horizontal alignment is based solely on minimizing right-ofway acquisition costs. We compared costs for three horizontal alignments centered on existing right-of-way; aligned against the westerly right-ofway; and aligned against the easterly right-of-way. To further refine our comparison, we broke the corridor into four segments. The segment limits

Figure 1 - Segment Map
correspond to the location of the proposed roundabout locations at $29^{\text {th }}$ Avenue SE, $22^{\text {nd }}$ Avenue SE, and $16^{\text {th }}$ Avenue SE (see Figure 1). Breaking the segments at the roundabout locations allows for transitions between alternative alignments. Therefore, we are not limited to one alignment for the entire corridor.

The estimated costs for right-of-way acquisition for the three horizontal alignments are shown in Table 1. The numbers of full parcel acquisitions are shown in Table 2. Note, these numbers exclude impacts from the three roundabouts, since the impacts from roundabouts are mostly independent of the alternative alignments.

Table 1
Estimated Right-of-Way Acquisition Costs (Excluding Roundabout Impacts)

Segment	Aligned on the Centerline	Aligned Against the Westerly Right-of-Way	Aligned Against the Easterly Right-of-Way
1	$\$ 1,157,827$	$\$ 3,046,962$	$\$ 864,618$
2	$\$ 4,942,902$	$\$ 1,934,930$	$\$ 7,324,351$
3	$\$ 2,417,583$	$\$ 1,665,844$	$\$ 1,292,543$
4	$\$ 3,687,493$	$\$ 2,568,042^{1}$	$\$ 3,570,840$

1. Assumes a full parcel acquisition is not required for the apartment buildings at 1510 College Street SE .

Table 2
Full Parcel Acquisitions for Structures and/or Driveways Impacted (Excluding Roundabout Impacts)

Segment	Aligned on the Centerline	Aligned Against the Westerly Right-of-Way	Aligned Against the Easterly Right-of-Way
1	14	8	$\mathbf{1}$
2	7	5	22
3	11	5	3
4	6^{1}	11	

1. Assumes a full parcel acquisition is not required for the apartment buildings at 1510 College Street SE .

We recommend the following horizontal alignments by segment to minimize right-of-way acquisition costs. These alignments are shown in bold in Tables 1 and 2.

- Segment 1 - Aligned against the easterly right-of-way line;
- Segment 2 - Aligned against the westerly right-of-way line;
- Segment 3 - Aligned against the easterly right-of-way line; and
- Segment 4 - Aligned against the westerly right-of-way line.

The total cost and the total number of full parcel acquisitions for the recommended alignment are shown in Tables 3 and 4, respectively. These numbers do include impacts for the three roundabouts. Therefore, the totals in Tables 3 and 4 differ from the totals from Tables 1 and 2.

Table 3
Estimated Right-of-Way Acquisition Costs - Recommended Alignment (Including Roundabouts)

Segment	Estimated R/W Costs
1	$\$ 1.50 \mathrm{M}$
2	$\$ 3.04 \mathrm{M}$
3	$\$ 1.91 \mathrm{M}$
4	$\$ 3.14 \mathrm{M}^{1}$
TOTAL	$\$ 9.59 \mathrm{M}^{1}$

1. Assumes a full parcel acquisition is not required for the apartment buildings at 1510 College Street SE.

Table 4
Full Parcel Acquisitions for Structures and/or Driveways Impacted - Recommended Alignment (Including Roundabouts)

Segment	Number of Full Parcel Acquisitions
1	3
2	8
3	5
4	7^{1}

1. Assumes a full parcel acquisition is not required for the apartment buildings at 1510 College Street SE.

The total right-of-way costs shown in Table 3 are preliminary and they are represented in 2008 dollars. We recommend $\$ 13.0 \mathrm{M}$ as a reasonable planning level estimate at this stage of project development.

Background

Existing Conditions

College Street from Lacey Boulevard to $37^{\text {th }}$ Avenue SE is a four-lane National Highway System (NHS) principal arterial with a general right-of-way width of 60 feet. The existing street width is approximately 45 feet from curb to curb. There are narrow sidewalks located along the corridor on each side of the street. The corridor is a built environment fronted by homes, small businesses, apartments, and schools.

College Street provides a primary north-south link for traffic, transit, pedestrians, and bicyclists within the City from south Thurston County to Interstate 5. The corridor currently carries 21,000 (2005 traffic count) and is projected to carry 32,000 vehicles per day by 2020 according to the Lacey Transportation Plan (College Street is identified as a Strategy Corridor in the Lacey Transportation Plan ${ }^{1}$). The corridor also provides local access to many homes fronting the street and

Figure 2 - Vicinity Map provides access to several local streets and collectors.

Traffic is heavy along the corridor and congested during peak hours. Vehicles turning left from College Street to homes or local streets increase congestion by occupying the inside through-lane while waiting for breaks in traffic. There are approximately 130 driveways 24 T -intersections, and four 4 -way intersection collectively generating significant turn volumes. There are high-frequency collision locations along the corridor due to conflicts between turning vehicles and high volumes of through traffic. Narrow sidewalks, high volumes, and a lack of bike lanes discourage use by pedestrians and bicyclists. A lack of street amenities (i.e., planter strips/vegetation, decorative street lighting, street furniture) conflicts with community values articulated by City staff and City Council.

[^5]
Previous Work

Previous study work resulted in a report, "College Street, Evaluation of Options", August 2005. This report documented a comprehensive alternatives analysis that scored and ranked ten options (nine build and one no-build) for improvements to College Street that addressed the corridor needs. The report recommended Option 9 as the preferred option, because it best provides a blend of corridor capacity, neighborhood connectivity, non-motorized uses, and corridor aesthetics. The cross-section included a planted center median to control access and provide space for left-turn lanes at key intersections; wide sidewalks with tree wells to promote walk-ability; space for commuting bicycles; and roundabouts at major intersections to provide intersection control. The overall right-of-way width of 72 feet widens to 76 feet at left-turn lane locations.

The current study work began in February 2008 and consists of the following tasks:

- Alternatives Analysis to define the recommended dimensions of the cross-sectional elements;
- Horizontal Alignment and Right-of-Way to define the recommended alignment;
- Neighborhood Circulation and Access to define recommended changes to street access and/or driveway access; and
- Improvements Phasing Plan to estimate project costs and define recommended phasing for the improvements.

WHPacific prepared an Alternatives Analysis technical memorandum, dated April 11, 2008. The memorandum presented ranges of dimensions for roadway cross-sectional elements (median width, left-turn lane width, through-lane width, space for bicyclists, planter/tree well width, and sidewalk width), and recommended a proposed cross-section for College Street for use in subsequent study work, including the Horizontal Alignment and Right-of-Way work presented herein. The

Figure 3-Recommended Alternative recommended cross-section is shown in Figure 3.

Crown/Cross Slope Analysis

Approach

Available Data

The City of Lacey provided survey data from February 2004 used for an overlay project in 2006. The data contains curbs, crowns, utilities, storm drainage, topography behind curb at intersections, right-ofway centerlines, right-of-way lines, parcel limits, and elevation information to create a TIN file. After discussions with the City of Lacey regarding changes to elevation data due to the 2006 overlay work, we determined a uniform upward adjustment to pavement elevations (2 inches) is adequate to create elevation data for this study work. The survey data limits generally extend from curb to curb, begin approximately 900 feet south of $29^{\text {th }}$ Avenue SE, and end approximately at $13^{\text {th }}$ Avenue Ct. SE. We used the survey data to create cross-sections every 50 feet. The cross-sections show the existing roadway has three distinct cross-section conditions, (1) one-side of the road is steeper than the other (asymmetrical crown); (2) normal crown with cross-slopes approximating 2-percent (normal symmetrical crown); and (3) normal crown with steep cross-slopes (steep symmetrical crown). These conditions change through the corridor as shown in Figure 4.

Figure 4 - Existing Cross-Slope Variation

Assumptions

After reviewing the cross-sections, we used two conditions (asymmetrical crown and normal symmetrical crown) to evaluate pavement costs. We limited the evaluation of costs from proposed curb to curb (61 feet). Therefore, we did not consider grading behind the curbs. Other key assumptions include:

- Grinding is not required;
- Existing pavement will be overlaid with a 2-inch HMA wearing course;
- The new roadway is crowned with 2-percent cross-slopes;
- HMA will be used for all fill to flatten steep cross-slopes; and
- The new pavement section for widening is 4 -inch of HMA over 12 -inches of crushed rock.

Findings

Alternatives

The purpose of the Crown/Cross-Slope Analysis is to evaluate differences in pavement construction costs based on alternative crown locations. We considered three horizontal alignments;

- Aligned on the right-of-way centerline;
- Aligned against the westerly right-ofway line; and
- Aligned against the easterly right-ofway line.

Using the two representative cross-slope conditions, we generated quantities and cost estimates for the three alignment alternatives. We broke the corridor into four segments (see Figure 5). The segment limits correspond to the location of the proposed roundabout locations at $29^{\text {th }}$ Avenue SE, $22^{\text {nd }}$ Avenue SE and $16^{\text {th }}$ Avenue SE. Breaking the segments at the roundabout locations allows for transitions between alternative alignments. Therefore, we are not limited to one alignment for the entire corridor.

Figure 5 - Segment Map

The differences in pavement costs are shown below in Table 5. The least cost alignment is shown as $\$ 0$ for each segment since we are interested only in the cost differences. The costs shown do not represent full pavement cost estimates. The costs shown in Table 5 indicate there are no significant differences in costs between the alignment alternatives.

Table 5
Alternative Analysis Comparison

Segment	Aligned on the Centerline	Aligned Against the Westerly Right-of-Way	Aligned Against the Easterly Right-of-Way
1^{1}	$\$ 25,020$	$\$ 0$	$\$ 27,090$
2	$\$ 18,070$	$\$ 0$	$\$ 26,075$
3	$\$ 0$	$\$ 17,160$	$\$ 5,295$
4^{1}	$\$ 0$	$\$ 8,850$	$\$ 2,445$

[^6]
Right-of-Way Analysis

Approach
 Available Data

The City of Lacey provided Geographical Information System (GIS) information, planimetrics for the corridor, survey data, and aerial photography. The GIS data provided comes from the Thurston County Assessor's Office (February 2008) and contains land values, building values, total values, lot size, property owner, site address, and property owner's address. The planimetric files (1998) contain buildings, driveways, roadway, fences, and other features above ground. The survey data (February 2004) contains curbs, crowns, utilities, storm drainage, topography behind curb at intersections, right-ofway centerlines, right-of-way lines, parcel limits, and elevation information. The aerial photography was flown in 2006.

Assumptions

For estimating the cost of right-of-way acquisitions we used assessed values from the GIS data. We increased the assessed values by a factor of 1.4 to estimate market values. We used land values for strip acquisitions, and we used total values for full parcel acquisitions. We also included administrative costs based on averages provided by the City of Lacey ${ }^{2}$ and WSDOT Real Estate Services ${ }^{3}$ as shown in Table 6. All right-of-way costs (acquisition and administrative) are estimated in 2008 dollars. We assumed a full parcel acquisition if either of the following conditions is met:

- The proposed right-of-way reduces the driveway length to less than 20 feet, the minimum driveway length per City of Lacey guidelines ${ }^{4}$. We used aerial photography, planimetric data, and project photos to locate and verify driveways.
- The proposed right-of-way line encroaches within two feet of a structure. We used aerial photography, planimetric data, and project photos to locate structures.

For full parcel acquisitions, we did not offset the acquisitions cost by potential re-sale value of a remnant parcel.

[^7]Table 6
Right-of-Way Administrative Costs

Description	Cost
Negotiation costs (right-of-way costs $\leq \$ 25 \mathrm{k}$)	$\$ 4,500$ per parcel
Negotiation costs (right-of-way costs $>\$ 25 \mathrm{k}$)	$\$ 6,750$ per parcel
Title and escrow costs (right-of-way costs $\leq \$ 25 \mathrm{k}$)	$\$ 1,100$ per parcel
Title and escrow costs (right-of-way costs $>\$ 25 \mathrm{k}$)	$\$ 1,650$ per parcel
Appraisal costs (only for right-of-way costs $>\$ 25 \mathrm{k}$)	$\$ 5,500$ per parcel
Appraisal review costs (only for right-of-way costs $>\$ 25 \mathrm{k}$)	$\$ 1,000$ per parcel
Statutory evaluation allowance (all right-of-way purchases) Relocation services (full take from a rental home or commercial) Relocation services (full take from a single family home owner) \$750 per parcel	

1. We assumed a property is a rental property if the owner's address is different than site address.

Findings

Alternatives

The purpose of the Right-of-Way Analysis is to evaluate differences in acquisitions costs based on alternative horizontal alignments. We considered three horizontal alignments:

- Aligned on the right-of-way centerline;
- Aligned against the westerly right-of-way line; and
- Aligned against the easterly right-of-way line.

We laid the proposed cross-section (82 feet) against the existing right-of-way and the GIS parcel data to generate right-of-way acquisition costs for the three alternative alignments. We broke the results into the same four segments used in the Crown/Cross-Slope Analysis. We found significant differences in costs for the alternative alignments as shown in Table 7 below. Full parcel acquisitions are shown in Table 8. The right-of-way acquisition costs for Segment 4, Aligned Against the Westerly Right-of-Way are based on the assumption full acquisition is not required at the apartment buildings at 1510 College Street SE . The proposed right-of-way line does encroach on the existing buildings, but it is assumed the buildings may be remodeled to remove end units to avoid full acquisition. The estimated cost shown includes $\$ 800 \mathrm{~K}$ as costs to cure for impacts to the existing buildings.

Table 7
Estimated Right-of-Way Acquisition Costs

Segment	Aligned on the Centerline	Aligned Against the Westerly Right-of-Way	Aligned Against the Easterly Right-of-Way
1	$\$ 1,157,827$	$\$ 3,046,962$	$\$ 864,618$
2	$\$ 4,942,902$	$\$ 1,934,930$	$\$ 7,324,351$
3	$\$ 2,417,583$	$\$ 1,665,844$	$\$ 1,292,543$
4	$\$ 3,687,493$	$\$ 2,868,042^{1}$	$\$ 3,570,840$

1. Assumes a full parcel acquisition is not required for the apartment buildings at 1510 College Street $S E$.

Table 8
Full Parcel Acquisitions for Structures and/or Driveways Impacted

Segment	Aligned on the Centerline	Aligned Against the Westerly Right-of-Way	Aligned Against the Easterly Right-of-Way
1	2	8	1
2	14	5	22
3	7	5	3
4	11	6^{1}	11

1. Assumes a full parcel acquisition is not required for the apartment buildings at 1510 College Street SE.

Recommendation

Based on the significant cost differences for right-of-way acquisition costs, we recommend the following horizontal alignments by segment. Figure 6 graphically depicts the horizontal alignment by segment:

- Segment 1 - Aligned against the easterly right-of-way line;
- Segment 2 - Aligned against the westerly right-of-way line;
- Segment 3 - Aligned against the easterly right-of-way line; and
- Segment 4 - Aligned against the westerly right-of-way line.

The total cost and the total number of full parcel acquisitions for the recommended alignment are shown in Tables 9 and 10, respectively. These numbers do include impacts for the three roundabouts. Therefore, the totals in Tables 3 and

Figure 6 - Horizontal Alignment by Segment 4 differ from the totals from Tables 1 and 2.

Table 9
Estimated Right-of-Way Acquisition Costs - Recommended Alignment (Including Roundabouts)

Segment	Estimated R/W Costs
1	$\$ 1.50 \mathrm{M}$
2	$\$ 3.04 \mathrm{M}$
3	$\$ 1.91 \mathrm{M}$
4	$\$ 3.14 \mathrm{M}^{1}$
TOTAL	$\$ 9.59 \mathbf{M}^{1}$
Assumes a full parcel acquisition is not required for the apartment buildings at 1510 College Street SE.	
Table 10	
Full Parcel Acquisitions for Structures and/or Driveways Impacted - Recommended Alignment (Including Roundabouts)	
Segment	Number of Full Parcel Acquisitions
1	3
2	8
3	5
4	7^{1}

1. Assumes a full parcel acquisition is not required for the apartment buildings at 1510 College Street SE .

Table 11 shows strip acquisitions and full parcel acquisitions by segment. Table 11 also shows potential ways to avoid some of the full parcel acquisitions (i.e., reduce the median width, reduce the sidewalk width and remove tree wells, and/or shift the horizontal alignment. For a shift in the horizontal alignment there will be an increase in the parcels impacted and a corresponding increase in administrative costs. The full parcel acquisitions due to the three roundabouts are shown in Table 11, but the square footages for strip acquisitions shown in Table 11 do not include acquisition for roundabouts as shown on the Right-of-Way Analysis Maps, Attachment A, since the roundabout layouts are very conceptual.

Attachments

Attachment A - Right-of-Way Analysis Maps - Acquisition Summary
Attachment B - Right-of-Way Analysis Maps - Aerial Photography

Table 11 Strip and Full Parcel Acquisitions by Segment

Segment 1-37th to 29th (Aligned Against the Easterly Right-of-Way Line) - Strip Acquisitions
Segment 1-37th to 29th (Aligned Against the Easterly Right-of-Way Line) - Full Parcel Acquisitions

Parcel Number	Site Address	Existing Parcel (SQFT)	Structure/ Roundabout Impact	Driveway Impact	Remaining Driveway Depth (FT)	Potential Mitigation*
58090006900	4517 29th Court SE	9,883	R			N/A
33750001000	4605 Bel Air Drive SE	8,986	R			N/A
11829410102	3515 College Street SE	17,974		D	10^{\prime}	1

Strip and Full Parcel Acquisitions by Segment
Segment 2-29th to 22 $^{\text {nd }}$ (Aligned Against the Westerly Right-of-Way Line) - Strip Acquisitions

Parcel Number	Site Address	Existing Parcel (SQFT)	Right-of-Way Required (SQFT)	Remaining Parcel (SQFT)
11821330100	2406 College Street SE	37,992	4,438	33,554
84850000100	2602 College Street SE	21,162	3,439	17,723
84850000101	2606 College Street SE	15,512	2,523	12,989
11828220400	2626 College Street SE	39,886	2,433	37,453
11828220500	2702 College Street SE	49,877	3,649	46,228
11828220600	2706 College Street SE	51,346	3,749	47,597
11828230202	2818 College Street SE	9,392	1,484	7,908
11828220703	4600 28th Ave SE	6,970	468	6,502
11828220704	4604 28th Ave SE	8,793	285	8,508
33750000100	4604 Bel Air Drive SE	9,511	2,208	7,303
58700002100	4705 SE 22nd Avenue	83,375	5,358	78,017
11828220205	4805 27th Lane SE	5,283	303	4,980

Segment 2-29th to 22 ${ }^{\text {nd }}$ (Aligned Against the Westerly Right-of-Way Line) - Full Parcel Acquisitions

Parcel Number	Site Address	Existing Parcel (SQFT)	Structure/ Roundabout Impact	Driveway Impact	Remaining Driveway Depth (FT)	Potential Mitigation*
84800002100	2502 College Street SE	13,047	S			1
84800002101	2506 College Street SE	9,496	S			1
11828230201	2822 College Street SE	9,407		D	8'	2
58090000100	4520 29th Avenue SE	11,214	R			N/A
62000000100	4525 22nd Avenue SE	11,965	R			N/A
43550000100	4602 SE 24th Avenue	10,201	S			3
58700002000	4603 SE 23rd Avenue	10,638	S			N/A
33750000100	4604 Bel Air Drive SE	9,511	R			N/A
*Potential Mitigation O 1. Reduce both sid 2. Move Roundabo 3. Reduce both sid	tions: valk and median width. entrance to the west and transition walk and median width. Curb return cour	ct driveway even	mitigation.			

3. Reduce both sidewalk and median width. Curb return could possibly impact driveway even with this mitigation.
Table 11
Strip and Full Parcel Acquisitions by Segment
Segment 3 - $\mathbf{2 2}^{\text {nd }}$ to $16^{\text {th }}$ (Aligned Against the Easterly Right-of-Way Line) - Strip Acquisitions

Parcel Number	Site Address	Existing Parcel (SQFT)	Right-of-Way Required (SQFT)	Remaining Parcel (SQFT)
59100001600	1605 College Street SE	10,670	1,486	9,184
59100001500	1613 College Street SE	10,656	1,485	9,171
11820413202	1915 College Street SE	11,462	1,981	9,481
11820440100	2109 College Street SE	133,096	990	132,106
11820440200	2121 College Street SE	14,864	2,959	11,905
59100000101	4533 17th Avenue SE	5,710	1,561	4,149
11820410700	4550 19th Avenue SE	39,956	6,569	33,387
11820413201	4553 19th Avenue SE	10,831	1,848	8,983

Segment 3-22nd to 16 $^{\text {th }}$ (Aligned Against the Easterly Right-of-Way Line) - Full Parcel Acquisitions

Parcel Number	Site Address	Existing Parcel (SQFT)	Structure/ Roundabout Impact	Driveway Impact	Remaining Driveway Depth (FT)	Potential Mitigation
71400000100	1601 College Street SE	10,639	$S \& R$			N/A
59100000100	1705 College Street SE	4,968	$S \& D$			N/A
11820413200	1921 College Street SE	16,022	S			1
11820440200	2121 College Street SE	14,864	R			N/A
64720001200	4603 16th Avenue SE	7,998	R			N/A
*Potential Mitigation Measures: 1. Reduce both sidewalk and median width						
Segment 4-16 ${ }^{\text {th }}$ to Lacey (Aligned Against the Westerly Right-of-Way Line) - Strip Acquisitions						
Parcel Number	Site Address	Existing Parcel (SQFT)	Right-of-Way Required (SQFT)	$\begin{aligned} & \text { Remaining P } \\ & \text { (SQFT) } \end{aligned}$		
79800000400	1324-1326 College St SE	11,712	1,650			
74700001500	1418 College Street SE	12,095	1,811			
11821231900	1510 College Street SE ${ }^{1}$	226,466	10,119			

Technical Memorandum - Horizontal Alignment and Right of Way Limits Page-14-
Table 11
Strip and Full Parcel Acquisitions by Segment
Segment 4-16 th to Lacey (Aligned Against the Westerly Right-of-Way Line) - Full Parcel Acquisitions

Parcel Number	Site Address	Existing Parcel (SQFT)	Structure/ Roundabout Impact	Driveway Impact	Remaining Driveway Depth (FT)	Potential Mitigation*
79800000100	1302 College Street SE	7,527		D	$13 '$	N/A
79800000200	1308 College Street SE	7,431	S			N/A
79800000300	1320 College Street SE	7,527	S			N/A
11821231800	1328 College Street SE	9,359	S \& D			N/A
71400001601	4524 SE 16th Avenue	5,516	R			N/A
74700000100	4602 SE 14th Avenue	12,237	S			1
74700001300	4603 SE 14th Avenue	10,662	S			N/A

Appendix C

Technical Memorandum

Date:
October 22, 2008 Rev 4/17/09

To:
Martin Hoppe , P.E., PTOE
Company: City of Lacey

Phone: 360.438.2681

Fax: 360.456.7799

Address: 420 College Street SE

Lacey, WA 98509-3400

RE: Neighborhood Circulation and Access

From: Scott Sawyer, P.E.
Title: Senior Project Manager

Phone: 360.918.5305

Fax: $\quad 360.754 .1195$

Project \#: 034709

Project College Street Improvement Report Name: \qquad

Purpose

The three purposes of this memorandum are to present the recommended improvements to College Street as a Strategy Corridor; present the recommendations for the College Street Neighborhood Circulation and Access Management Plan (NCAMP); and present results of traffic analyses to evaluate the performance of College Street with the recommended improvements.

Summary

Strategic Corridor

The City of Lacey recognizes College Street as a Strategy Corridor. Strategy Corridors are major arterials in dense urban areas where traditional approaches to address congestion such as roadway widening are not practical or conflict with community values. Traditional performance measures, such as Level of Service, do not apply to Strategy Corridors because they would not allow increased densities in the urban core.

Neighborhood Circulation and Access Management Plan (NCAMP)

The NCAMP recommends a raised median to manage access. Access management is a tool to reduce traffic congestion and reduce traffic collisions. The intent of access management is to provide access for abutting properties while preserving the flow of traffic. The NCAMP also

Figure 1 - Neighborhood Circulation Access and Management Plan
identifies measures recommended for College Street as a Strategy Corridor. The recommendations include identifying roundabout locations, median break locations (allowing for left turns), street grid connections to increase access to alternate routes, and driveways consolidations. Figure 1 shows the recommended roundabouts, median breaks, and street grid connections.

Traffic Analyses

Traffic analysis was conducted to evaluate how the recommended improvements will impact traffic operations in 2030. The results show the recommended access control measures will not adversely affect neighborhoods, although left turn movements at some neighborhoods will be difficult in the PM peak hour. The roundabouts will operate well under expected future volumes on College Street.

Background

Existing Conditions

College Street is a four-lane National Highway System (NHS) principal arterial from Lacey Boulevard to $37^{\text {th }}$ Avenue SE with a general right-of-way width of 60 feet. The existing street width is approximately 45 feet from curb to curb. There are narrow sidewalks located along the corridor on each side of the street. The corridor is a builtenvironment fronted by homes, small businesses, apartments, and schools.

College Street provides a primary north-south link for traffic, transit, pedestrians, and bicyclists within the City from south Thurston County to Interstate 5. The corridor currently carries 21,000 vehicles per day (2005 traffic count) and is projected to carry 32,000 by 2020 according to the Lacey
Transportation Plan. The corridor also provides local access to several homes fronting the street and to several local streets and collectors.

Figure 2 - Vicinity Map

Traffic is heavy along the corridor and congested during peak hours. Vehicles turning left from College Street to homes or local streets increase congestion by occupying the inside through-lane while waiting for breaks in traffic. There are approximately 130 driveways 24 T -intersections, and four 4 -way intersection collectively generating significant turn volumes. There are high-frequency collision locations along the corridor due to conflicts between turning vehicles and high volumes of through traffic. Narrow sidewalks, high volumes, and a lack of bike lanes discourage use by pedestrians and bicyclists. A lack of street amenities (i.e., planter strips/vegetation, decorative street lighting, street furniture) conflicts with community values articulated by City staff and City Council.

Previous Work

Previous study work resulted in a report, "College Street, Evaluation of Options", August 2005. This report documented a comprehensive alternatives analysis that scored and ranked ten options (nine build and one no-build) for improvements to College Street that addressed the corridor needs. The report recommended Option 9 as the preferred option, because it best provides a blend of corridor capacity, neighborhood connectivity, non-motorized uses, and corridor aesthetics. The cross-section included a planted center median to control access and provide space for left-turn lanes at key intersections; wide sidewalks with tree wells to promote walk-ability; space for commuting bicycles; and roundabouts at
major intersections to provide intersection control. The overall right-of-way width of 72 feet widens to 76 feet at left-turn lane locations.

The current study work began in February 2008 and consists of the following tasks:

- Alternatives Analysis to define the recommended dimensions of the cross-sectional elements;
- Horizontal Alignment and Right-of-Way to define the recommended alignment;
- Neighborhood Circulation and Access to define recommended changes to street access and/or driveway access; and
- Improvements Phasing Plan to estimate project costs and define recommended phasing for the improvements.

WHPacific prepared an Alternatives Analysis technical memorandum, dated April 11, 2008. The memorandum presented ranges of dimensions for roadway cross-sectional elements (median width, leftturn lane width, through-lane width, space for bicyclists, planter/tree well width, and sidewalk width), and recommended a proposed cross-section for College Street for use in subsequent study work. The recommended cross-section is shown in Figure 3.

WHPacific also prepared a Horizontal Alignment and Right-of-Way Limits technical memorandum dated June 6, 2008. The memo recommended aligning the cross-section shown in Figure 3 as follows:

- Segment 1 ($37^{\text {th }}$ Ave SE to $29^{\text {th }}$ Ave SE) - Aligned against the easterly right-of-way line;
- Segment $2\left(29^{\text {th }}\right.$ Ave SE to $22^{\text {nd }}$ Ave SE) - Aligned against the westerly right-of-way line;
- Segment 3 ($22^{\text {nd }}$ Ave SE to $16^{\text {th }}$ Ave SE) - Aligned against the easterly right-of-way line; and
- Segment 4 ($16^{\text {th }}$ Ave SE to Lacey Boulevard SE) - Aligned against the westerly right-of-

Figure 3 - Recommended Alternative

Strategic Corridor

College Street is classified as a four-lane Principal Arterial under the National Highway System classification system; however, the NHS classification allows the City to have jurisdictional control of College Street. Under the City of Lacey functional classification, College Street is classified as a Major Arterial.

Thurston Regional Planning Council 2025 Transportation Plan has designated College Street from Martin Way to Yelm Highway as a Strategy Corridor. Strategy Corridors are roadways where traditional performance measures based on capacity do not apply because community values or physical environmental constraints will not allow capacity improvements beyond a 5-lane section. Strategy Corridors occur in areas where increased density and infill are encouraged. Without the designation of a Strategy Corridor, growth may move to less dense areas where it is more practical to increase capacity. This could lead to urban sprawl which contradicts the Growth Management Act goals of limiting sprawl by increasing infill and density.

The City of Lacey recognizes College Street as a Strategy Corridor. The City considers the following factors in evaluating proposed improvements to Strategy Corridors:

- Provide high quality and fully intergraded bike, pedestrian, carpool, and transit services.
- Complete and connected grids
- Utilize Access Management Strategies
- Manage Parking
- Use aggressive Travel Demand Management Strategies
- Intensity Land Use in the urban core.

The recommended improvements for the College Street Corridor are consistent with the City's guidelines for Strategy Corridors as summarized below:

High Quality and Fully Intergraded Bike, Pedestrian, Carpool, and Transit Services

College Street is constrained by right of way limits with businesses and homes fronting College Street. The sidewalks are narrow and there are no bicycle lanes. Currently, Intercity Transit Route 64 provides hourly service to College Street with transfer stations near Lacey City Hall and Yelm Highway.

The Recommended Alternative provides Type III bicycle lanes (3-foot) and 10.5 -foot sidewalks to improve non-motorized facilities, and access to transit routing.

Complete and Connected Grids

Connected grid streets provide multiple route options and encourage local traffic to use these routes over arterials. Potential grid connections are discussed under Neighborhood Circulation and Access Management Plan below.

Access Management

Access management for College Street is discussed under Neighborhood Circulation and Access Management Plan below.

Parking Management

There is currently no parking on College Street and the Recommended Alternative does not provide onstreet parking due to limited rights-of-way.

Aggressive Travel Demand Management Strategies

The City of Lacey is implementing travel demand management strategies on a regional level:

- Encouragement of land use policies that provide public-private partnerships to develop parking prices consistent with demand in urban and employment areas
- Encouragement of travel during non-peak periods to take advantage of wasted capacity Encouragement of schools and large employers to implement travel demand management strategies

Land Use Intensification

Traditional capacity based concurrency requires added capacity to mitigate increased trips from development. College Street is mostly built-out and fronted by residences and business. Therefore, adding capacity would require significant right-of-way acquisition with displacement of homes and businesses. Designating College Street as a Strategy Corridor allows for land use intensification and infill. It centers growth in the urban core and discourages sprawl.

Neighborhood Circulation and Access Management Plan

The Neighborhood Circulation and Access Management Plan (NCAMP) recommends access management along College Street to balance throughput operations with left-turn access to abutting neighborhoods. The NCAMP calls for (1) raised-median access control along College Street, (2) median breaks to provide left-turn access to neighborhoods lacking access to other north-south arterials, (3)
driveway revisions to reduce the number of access points, and (4) street grid connections to give neighborhood access to other north-south arterials. Key recommendations of the NCAMP are shown in Figure 4. Detailed recommendations are shown on the attached roll map.

Raised-Median Access Control and Median Breaks

The NCAMP recommends a raised median to manage access. Access Management is a tool to address to reduce traffic congestion and reduce traffic collisions. The intent of Access Management is to provide access for abutting properties while preserving the flow of traffic in terms of safety, capacity and speed of travel. Studies show the uncontrolled proliferation of driveways and intersections along a corridor reduces the capacity, increases the number and severity of collisions, and inhibits bicycle and pedestrian usage. The benefits of access management include:

- Improved Safety - by reducing the number and severity of collisions;
- Improved Operations - by reducing delays while maximizing the potential roadway capacity;
- Reduced Environmental Impacts - by lowering the amount of air pollution caused by stop-andgo operation thereby increasing fuel economy; and
- Improved Economics - by preserving public investment in the roadway infrastructure, avoiding the need for roadway widening or other roadway improvements.

Figure 4 - Neighborhood Circulation Access and Management Plan

The NCAMP also recommends roundabouts at major intersections and median breaks at other key intersections to provide left-turn access. We considered the following approaches to identifying median break locations:

- Space median breaks to match the 660 -foot standard spacing for College Street as a Major Arterial.
- Locate median breaks at the intersections with the highest left-turn volumes to/from side-streets.
- Locate median breaks at locked neighborhoods (i.e., abutting neighborhoods that lack access to other north-south arterials - Golf Club Road SE, Judd Street SE, or Ruddell Road SE).
- Locate medians at the locked neighborhoods with the highest number of units (aka residences) in the neighborhood.
- Located median breaks to book-end locked neighborhoods to minimize the longest distance traveled to a median break or roundabout for any neighborhood.

For the purpose of this memorandum, we are recommending one possible approach to locating medians. We are recommending median breaks to book-end locked neighborhoods so left-turn and/or u-turn access is less than $1 / 4$-mile from any locked neighborhood. As projects progress for implementing the recommended improvements, the median break locations should be revisited and other approaches considered. The median break locations could change in the future.

There are 14 locked neighborhoods/apartment complexes:

- College Park Apartments
- Chambers Crest Apartments
- Driveway across from $32^{\text {nd }}$ Lane SE Private
- $32^{\text {nd }}$ Lane SE Private
- Montclair Avenue SE
- College Lane SE
- $29^{\text {th }}$ Avenue SE
- Driveway (west side of College) between $27^{\text {th }}$ Court SE and $29^{\text {th }}$ Avenue SE
- $27^{\text {th }}$ Court SE
- $27^{\text {th }}$ Land SE Private
- $18^{\text {th }}$ Avenue SE East
- $17^{\text {th }}$ Avenue SE West Leg
- $17^{\text {th }}$ Avenue SE East Leg
- Diamond Head Apartments
- $13^{\text {th }}$ Court SE

Median breaks are recommended at the following intersections:

- College Park Apartments
- Montclair Avenue SE
- $27^{\text {th }}$ Lane SE Private
- $18^{\text {th }}$ Ave SE
- Diamond Head Apartments/ $14^{\text {th }}$ Way SE (west leg)

Driveway Revisions

There are approximately 130 driveways on College Street between $37^{\text {th }}$ Avenue SE and Lacey Boulevard. There is a potential conflict point at each driveway for vehicle traffic, pedestrians, and/or bicyclists. Reducing the number of conflict points will improve safety by decreasing the potential for collisions. The majority of driveways are the single access points for residences and businesses fronting College Street.

The NCAMP reviewed the driveways along College Street and indentified potential consolidation, relocation, and removal of driveways. There are locations where adjacent properties could share one driveway (Shared). Single properties with multiple driveways are candidates for consolidation (Consolidation) or removal of one driveway (Removal). Properties with additional side street access are candidates for relocation (Relocation). Driveways to properties that are identified as potential full parcel takes (per the Horizontal Alignment and Right of Way Limits technical memorandum) were not evaluated (Right of Way Take). Lastly, there are two driveways marked for removal that front a vacant lot at 1326/1324 College Street (Vacant). The following is a summary of revisions:

- Shared - 1
- Consolidation - 7
- Relocation - 5
- Right of Way Take - 24
- Vacant-2

A detailed listing of driveways and revisions is included as Attachment A.

Identifying Additional Neighborhood Connections

There is a grid system currently in place on the west side of College Street, Golf Club Road SE, $26^{\text {th }}$ Avenue SE, and Lacey Boulevard. There is also a grid system on the east side between College Street,

Judd Street SE/Ruddell Road SE, $31^{\text {st }}$ Avenue SE, and Lacey Boulevard. A review of the street network identified potential connection points to enhance the network and provide locked neighborhoods with access to other north-south arterials (i.e., Golf Club Road SE, Judd Street SE, or Ruddell Road SE). The potential connection points are as follows:

- Connect Lakeside Drive and Lakeview Drive and connect Muriel Dr to Lakeview Drive
- Connect $17^{\text {th }}$ Ave SE (west leg) to Golf Club Road SE
- Connect $18^{\text {th }}$ Ave SE (east leg) to Judd Street SE
- Connect $18^{\text {th }}$ Ave SE to $22^{\text {nd }}$ Ave SE immediately east of Mountain View Elementary
- Connect Judd Street between $24^{\text {th }}$ Ave SE and $25^{\text {th }}$ Ave SE

Traffic Analysis

The designation of College Street as a Strategy Corridor allows for implementation of policy points that encourage multi-modal travel while limiting the increase of single occupancy vehicles. While traditional capacity based concurrency does not apply to College Street, it is valuable to forecast how the corridor will operate.

The traffic data used for analysis is from counts during the PM peak hour. Turning movements to and from the side streets were collected. Previously, turning movement counts were collected on College Street at the intersections of Lacey Boulevard, $22^{\text {nd }}$ Avenue SE, and $37^{\text {th }}$ Avenue SE. A concept-level traffic analysis was conducted based on the information collected and future conditions from the regional planning model. The data and forecast volumes used for the analysis were collected from one peak hour.

Approaches to analyze College Street for existing conditions and for a build out year are described below.

Existing Condition

- Turning movement counts collected for Lacey Boulevard, $22^{\text {nd }}$ Avenue SE and $37^{\text {th }}$ Avenue were used to approximate the through volumes for College Street at the other intersections in the study limits.
- Side Street and driveway turning movement counts were added to the College Street through movements.
- The Level of Service (LOS) for stop controlled intersections was calculated for each intersection using Highway Capacity Software. LOS for stop controlled intersection is based on the worst movement with the most delay and does not report on the overall performance of the intersection.

Build Out

- The build out forecast volume is 32,000 vehicles per day on College Street per the Thurston County Regional Planning Council travel demand model.
- The Design Hourly Volume was assumed to be 10 percent to determine an hourly rate of 800 vehicles per lane per hour.
- Side street traffic was re-routed to account for medians, median breaks, and roundabouts.
- The LOS for stop controlled intersections was calculated for each side street using Highway Capacity Software.
- The LOS for roundabout intersections was calculated using SDIRA software and is based on the average delay of the entire intersection. The following steps were used to calculate the LOS:
- Assume a two-lane approach on College
- Assume a one-lane approach on Side Street
- Use a degree of saturation equal to .85 which is recommended for design applications. (Ratio of volume versus theoretical capacity)
- Increase the side street volume until the degree of saturation reaches 0.85
- Compare the side street volume at saturation with current traffic counts.

Results for Existing Stop Controlled Intersections

A review of the traffic data shows some patterns indicating the side street access is constrained in the PM peak by the heavy volume on College Street. The highest right-turn volume counted from a side street was 142 vehicles at $14^{\text {th }}$ Avenue SE. In contrast, the highest left turn volume counted from a side street was 11 vehicles at $29^{\text {th }}$ Avenue SE and Chamber Crest Apartments. The LOS at $14^{\text {th }}$ Avenue SE, including the 142 right turning vehicles, is C. However, the LOS at $29^{\text {th }}$ Avenue SE and at Chamber Crest Apartments is E, even though the volume is much less than at $14^{\text {th }}$ Avenue SE. The LOS for 2008 PM peak hour stop controlled intersections is shown in the table below.

Table 1
2008 PM Peak Hour Stop Controlled Intersection LOS

Intersection	Worst Movement	LOS	Delay(sec)	Overall I/S LOS
13th Ave	EB	C	15.4	C
13th CT	WB	B	14.6	B
14th Ave West Leg	EB	D	30.2	C
14th Ave East Leg	WB	C	15.8	B
14th Way	WB	C	15.8	C
Diamond Head Apartments N Dr	WB	B	11	B
15th Ave SE	EB	B	14.9	B
Diamond Head Apartments S Dr	EB	B	11	A
16th Ave SE	EB	B	14.9	B
17th Ave SE West Leg	EB	C	22.9	C
17th Ave SE East Leg	WB	B	14.5	B
18th Ave SE	WB	B	14.2	B
19th Ave/Mountain View	EB	C	19.1	C
22nd Ave SE	WB	C	16.6	C
23rd Ave SE	EB	D	27.2	D
24th Ave SE West Leg	EB	C	15.1	B
24th Ave SE East Leg	WB	D	30.7	B
25th Ave SE	WB	B	12.4	B
26th Ave SE West Leg	EB	C	21.5	B
26th Ave SE East Leg	WB	C	15.1	C
27th Ave SE	EB	D	32.3	D
27th CT SE	EB	E	50	D
28th Ave SE	WB	C	19.3	B
29th/Belair	EB	E	40.5	C
College Ln SE	WB	B	10.4	A
31st Ave SE	WB	C	18.5	B
Montclair Dr	EB	C	17.7	C
32nd Lane	EB	E	48.9	E
Chambers Crest Apartments N Dr	EB	E	43.2	D
College Park Apartments	EB	E	39.2	D
Komachin Middle School N DR	WB	B	10.4	A

Results for Build-Out PM Peak Hour

The raised median changes many intersections by eliminating left turns. Since the left turn movements add the most delay, the LOS does not degrade on College Street even with growth in volume. In the areas where left turns are allowed the LOS is F for stop controlled intersections due to heavy volumes on College Street. In these areas it will be very difficult to make left turns during peak hours, but the ability

Technical Memorandum - Neighborhood Circulation and Access

Page -9-
to make left turns will increase in the off peak areas. The results of the Build-Out PM Peak Hour LOS are shown in the table below.

Table 2
Build Out PM Peak Stop Controlled Intersection LOS

Intersection	Southbound		Northbound		Intersection
	LOS ${ }^{1}$	Delay	LOS ${ }^{1}$	Delay	
13th Ave SE	C	17.4			
			C	16.0	13th CT
14th Ave West Leg	D	30.2			
			C	15.5	14th Ave East Leg
14th Way SE	(F/D)	(69.8/34.1)			Diamond Head Apts (Median Break)
15th Ave SE	B	14.5			
16th Ave SE		ROUN	OUT		16th Ave SE
17th Ave SE West Leg	C	15.8			
			B	14.5	17th Ave SE East Leg
			(E/D)	(41.7/30)	18th Ave SE (Median Break)
19th Ave / Mountain View	C	15.7	C	15.0	19th Ave/Mountain View
22nd Ave SE	ROUNDABOUT				22nd Ave SE
24th Ave SE West Leg	C	15.9	B	14.8	23rd Ave SE
	B	14.7			
			B	14.6	24th Ave SE East Leg
			A	8.4	25th Ave SE
26th Ave SE West Leg	C	15.5			
			B	14.9	26th Ave SE East Leg 27th Ave SE
27th CT SE (Median Break)	(F/F) (147.1/69.1)				
			C	15.2	28th Ave SE
29th/Belair	ROUNDABOUT				29th/Belair
			B	14.3	College Ln SE
			C	15.2	31st Ave SE
Montclair Dr (Median Break)	(F/C)	(61.2/30)			
32nd Lane Chambers Crest Apartments	B	14.3			
	B	14.9			
College Park (Median Break)	(D/D)	(31.4/26.8)			
			B	14.4	Komachin Middle School N DR

1. LOS is reported as (worst movement/overall intersection) for stop-controlled side streets.

Results for Build-Out PM Peak Hour Roundabout Controlled Intersections

The analysis shows roundabouts will handle 325 vehicles per hour from side streets when College Street volumes are 800 vehicles per lane and 271 vehicles per hour from side streets when College Street volumes are 900 vehicles per lane. The highest volume counted on a side street at a proposed roundabout location is 64 vehicles in the peak hour. At the volume rates used for College Street, the side street would have to increase by over 400 percent before the roundabout operation would begin to degrade. Even at these volumes the level of service for the side street approaches is C with a maximum delay of 32.1 seconds.

Technical Memorandum - Neighborhood Circulation and Access
Page -10-

Table 3
Test Case 800 Vehicles Per Lane

Approach	Demand Flow Rate (veh/h)	Degree of Saturation	LOS	Ave Delay $(\mathbf{s e c})$
Northbound	1957	0.75	A	8.7
Southbound	1957	0.75	A	8.7
Eastbound	325	0.839	C	27.9
Westbound	325	0.839	C	27.9

Table 4
Test Case 900 Vehicles Per Lane

Approach	Demand Flow Rate (veh/h)	Degree of Saturation	LOS	Ave Delay (sec)
Northbound	2174	0.8	A	8.8
Southbound	2174	0.8	A	8.8
Eastbound	271	0.81	C	32.1
Westbound	271	0.81	C	32.1

Findings

The proposed improvements for the College Street Corridor from $37^{\text {th }}$ Avenue SE to Lacey Boulevard comply with Strategic Corridor requirements per Lacey Municipal Code 14.21 . The proposed access management shown on the Neighborhood Circulation and Access Management Plan strikes a reasonable balance between throughput operations and neighborhood access. Driveway revisions can maintain access while improving safety by reducing the number of conflict points. Potential grid connections can further enhance neighborhood access and circulation by providing access to other north-south arterials, such as Golf Club Road SE, Judd Street SE, and Ruddell Road SE. Some stop control intersections will experience significant delays making left turns in the PM peak hour due to heavy volumes on College Street.
Alternatively, vehicles can turn right and make a u-turn at the nearest roundabout or median break. Left-turns from side streets are more likely that during off peak periods. The

Figure 5 - Neighborhood Circulation Access and Management Plan roundabouts operate well in the build out year.

Recommendations

WHPacific recommends the access management strategies as shown on the Neighborhood Circulation and Access Management Plan (roll plan) for medians, median breaks, roundabouts, driveway revisions, and grid connections. Key recommendations from the plan are shown in Figure 5.

Technical Memorandum - Neighborhood Circulation and Access
Page -11-

Attachments

Attachment A - Detailed Driveway Inventory and Revisions

Attachment A - Detailed Driveway Inventory and Revisions

NUMBER	STATION	OFFSET	EXISTING WIDTH	SITE ADDRESS	SITE USE	DRIVEWAY REVISION	COMMENT
1	116+75.39	LT	22^{\prime}	3515 COLLEGE ST. SE	RENTALPOSSIBLY BUSINESS	RW FULL TAKE	FULL TAKE DW - HAS ACCESS TO REAR OF PROPERTY FROM 3511
2	117+43.86	LT	$32 \cdot$	3511 COLLEGE ST. SE	DUPLEX - SHARED WITH 3515	REMAIN	MAY BE ABLE TO SHARE WITH 3515
3	118+71.62	LT	25^{\prime}	3501 TO 3507 COLLEGE ST. SE	SHARED FOR TWO DUPLEXS	REMAIN	
4	119+40.13	LT	24^{\prime}	3413 AND 3415 COLLEGE ST. SE	DUPLEX	REMAIN	
5	119+61.03	RT	$36{ }^{\prime}$	KOMACHIN MIDDLE SCHOOL	SCHOOL	REMAIN	
6	120+54.81	LT	30^{\prime}	3407 AND 3409 COLLEGE ST. SE	SHARED-RESDENTIAL	REMAIN	
7	120+79.31	RT	22^{\prime}	3460 TO 3548 COLLEGE ST. SE	SHARED - RESDENTIAL	REMAIN	
8	122+80.21	RT	26^{\prime}	3320 TO 3430 COLLEGE ST. SE	SHARED-RESDENTIAL	REMAIN	
9	124+46.65	RT	22^{\prime}	3206 A \& B COLLEGE ST. SE	SHARED - RESDENTIAL	REMAIN	
10	125+19.41	LT	40^{\prime}	3201 COLLEGE ST. SE	RESIDENTIAL	RELOCATE	CONSTRUCT OFF 32ND LANE SE
11	126+24.02	RT	$29 '$	CITY OF LACEY AND RESIDENTS	SHARED	REMAIN	3108, 3110 A\&B, AND 3112 AND WATER TOWER ACCESS
12	126+45.64	LT	21	$32 N D$ LN. SE PVT.	SHARED-RESDENTIAL	REMAIN	
13	127+32.95	RT	16^{\prime}	3106 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
14	127+90.59	LT	20^{\prime}	4529 MONTCLAIR AVE. SE	RESIDENTIAL	REMAIN	ACCESS OFF MONTCLAIR
15	$128+16.88$	LT	22^{\prime}	4530 MONTCLAIR AVE. SE	RESIDENTIAL	REMAIN	ACCESS OFF MONTCLAIR
16	128+96.20	RT	17^{\prime}			REMAIN	ACCESS OF COLLEGE, GARAGE FACES COLLEGE
17	129+51.46	RT	311	4601 31ST AVE. SE	RESIDENTIAL	REMAIN	ACCESS OF 31ST
18	129+79.14	RT	21 '	4602 31ST AVE. SE	RESIDENTIAL	REMAIN	ACCESS OF 31ST
19				3041 COLLEGE ST. SE	VACANT LOT	FUTURE	
20	131+18.86	LT	21'	3001 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
21	131+61.25	LT	18				DUAL ACCESS OFF COLLEGE
22	$132+14.64$	LT	12^{\prime}	2905 COLLEGE ST. SE	RESIDENTIAL	CONSOLIDATION	DUAL ACCESS OFF COLLEGE
23	131+69.13	RT	10'	3032 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
24	132+96.06	RT	17^{\prime}	3026 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
25	133+29.15	LT	16^{\prime}	3015 \& 3023 COLLEGE ST. SE	SHARED 2-DUPLEXES	REMAIN	
26	133+52.12	RT	20^{\prime}	COLLEGE LN HOME OWNERS ASSOC.	SHARED	REMAIN	
27	$135+16.02$	RT	19'	3006 COLLEGE ST. SE	RESIDENTIAL	REMAIN	VERT. CHALLENGE
28	$136+44.85$	RT	23^{\prime}	4605 29TH AVE. SE	RESIDENTIAL	RW FULL TAKE	FULL TAKE FOR ROUNDABOUT
29	$136+74.55$	RT	16^{\prime}	4604 29TH AVE. SE	RESIDENTIAL	RW FULL TAKE	FULL TAKE FOR ROUNDABOUT
30	$136+77.67$	LT	19^{\prime}	4520 29TH AVE. SE	RESIDENTIAL	RW FULL TAKE	FULL TAKE FOR ROUNDABOUT
31			17^{\prime}	4517 29TH CT. SE	RESIDENTIAL	RW FULL TAKE	FULL TAKE FOR ROUNDABOUT
32	137+98.33	RT	19	2822 COLLEGE ST. SE	RESIDENTIAL	RELOCATE/RW FULL TAKE	FULL TAKE DW IMPACT-COULD CONSTRUCT NEW GARAGE 4604
33	$138+43.60$	LT	28^{\prime}	2721 COLLEGE ST. SE \& OTHERS	SHARED - RESDENTIAL	REMAIN	
34	$138+82.14$	RT	13^{\prime}	2818 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
35				4600 28TH AVE. SE	RESIDENTIAL	REMAIN	NEW HOUSE NOT SURE WHERE ITS AT (OFF 28TH AVE. ?)
36				4604 28TH AVE. SE	RESIDENTIAL	REMAIN	NEW HOUSE NOT SURE WHERE IT'S AT MAY SHARE WITH 4600
37	139+72.18	LT	21^{\prime}	2719 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
38	141+02.65	LT	24^{\prime}	2717 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
39	141+71.89	LT	19'	2713 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
40	141+90.66	RT	15'				DUAL ACCESS OFF COLLEGE
41	143+33.82	RT	16'	2706 COLLEGE ST. SE	RESIDENTIAL	CONSOLIDATION	DUAL ACCESS OFF COLLEGE
42	142+12.95	LT	20^{\prime}	2709 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
43	142+93.38	LT	28^{\prime}	2705 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
44	143+55.28	RT	14^{\prime}	2702 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
45	143+67.58	LT	19	2701 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
46	144+77.53	LT	$36{ }^{\prime}$	2617 COLLEGE ST. SE	RESIDENTIAL	REMAIN	DRIVEWAY IS OFF 27TH CT. SE

Attachment A - Detailed Driveway Inventory and Revisions

NUMBER	STATION	OFFSET	EXISTING WIDTH	SITE ADDRESS	SITE USE	DRIVEWAY REVISION	COMMENT
47	144+94.62	RT	$12{ }^{\prime}$	2700 COLLEGE ST. SE	RESIDENTIAL	REMAIN	THICK TREES NOT SURE WHATS IN THERE
48	145+40.36	RT	$18{ }^{\prime}$	2626 COLLEGE ST. SE	DAYCARE FACILITY	REMAIN	
49	$146+84.63$	LT	26^{\prime}	2613 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
50	147+19.20	RT	18^{\prime}	4805 27TH LN. SE PVT.	RESIDENTIAL	REMAIN	NEW HOUSE THIS LOT
51	147+30.24	RT	20^{\prime}	27TH LN. SE PVT.	SHARED - RESDENTIAL	REMAIN	27TH LN. SE PVT. - 7 HOUSES
52	147+60.94	LT	23^{\prime}	2609 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
53	148+72.63	RT	20^{\prime}	2606 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
54	149+03.51	LT	18^{\prime}	4529 26TH AVE. SE	RESIDENTIAL	REMAIN	OFF 26TH
55	149+13.19	RT	15^{\prime}				DUAL ACCESS OFF COLLEGE
56	149+42.68	RT	12^{\prime}	2602 COLLEGE ST. SE	RESIDENTIAL	CONSOLIDATION	DUAL ACCESS OFF COLLEGE
57	$149+33.53$	LT	13^{\prime}	4530 26TH AVE. SE	RESIDENTIAL	REMAIN	DUAL ACCESS OFF 26TH - THIS ONE IS CLOSE TO INTERSECTION
58	149+34.34	LT	13^{\prime}	4530 26TH AVE. SE	RESIDENTIAL	REMAIN	DUAL ACCESS OFF 26TH AND GO TO GARAGE
59	150+74.65	LT	18 '	2509 COLLEGE ST. SE	BUSINESS/RESIDENTIAL?	REMOVE	DUAL ACCESS US SHARED
60	151+27.34	LT	18^{\prime}	2505 \& 2509 COLLEGE ST. SE	BUSSINESS/RESIDENTIAL?	SHARED	KEEP THIS ONE
61	151+42.49	LT	12^{\prime}	2505 COLLEGE ST. SE	BUSINESS/RESIDENTIAL?	REMOVE	DUAL ACCESS US SHARED
62	152+05.95	LT	34^{\prime}	2501 \& 2505 COLLEGE ST. SE	BUSSINESS - SHARED	REMAIN	
63	150+82.02	RT	$7{ }^{\prime}$				FULL TAKE - HAD DUAL ACCESS
64	151+46.79	RT	10^{\prime}	2506 COLLEGE ST. SE	RESIDENTIAL	RW FULL TAKE	FULL TAKE - HAD DUAL ACCESS
65	152+59.67	RT	22^{\prime}	2502 COLLEGE ST. SE.	RESIDENTIAL	RW FULL TAKE	ACCESS OFF 25TH
66	153+24.88	LT	14^{\prime}	2405 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
67	154+26.22	LT	41^{\prime}	2401 COLLEGE ST. SE	RESIDENTIAL	REMAIN	ACCESS OFF 24TH AVE. SE
68	154+47.43	LT	16^{\prime}	2315 COLLEGE ST. SE	RESIDENTIAL	REMAIN	ACCESS OFF 24TH AVE. SE
69	155+19.53	RT	20^{\prime}	2406 COLLEGE ST. SE	RESIDENTIAL	REMAIN	ACCESS OFF 24TH AVE. SE
70	155+46.95	LT	21^{\prime}	2309 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
71	155+51.41	RT	24^{\prime}	4602 24TH AVE. SE	RESIDENTIAL	RW FULL TAKE	STRUCT. FULL TAKE ACCESS OFF 24TH AVE. SE
72				4531 23RD AVE. SE	RESIDENTIAL	REMAIN	ACCESS OFF 23RD AVE. SE
73	157+56	LT	20^{\prime}	4537 23RD AVE. SE	RESIDENTIAL	REMAIN	ACCESS OFF 23RD AVE. SE
74	157+85.94	RT	21^{\prime}	4603 23RD AVE. SE	RESIDENTIAL	RW FULL TAKE	STRUCT. FULL TAKE ACCESS OFF 23RD AVE. SE
75	158+72.58	LT	20^{\prime}	2213 COLLEGE ST. SE	RESIDENTIAL	REMAIN	
76	160+83.87	RT	16^{\prime}	4705 22ND AVE. SE	CHURCH	REMAIN	ACCESS OFF 22ND AVE. SE
77	$160+87.79$	LT	28^{\prime}	4525 22ND AVE. SE	BUSINESS	RW FULL TAKE	ROUNDABOUT FULL TAKE ACCESS OFF 22ND AVE.
78	161+09.29	LT	28^{\prime}	4514 \& 4516 22ND AVE. SE	DUPLEX	REMAIN	
79	161+18.65	LT	29^{\prime}	2121 \& 2119 COLLEGE ST. SE	DUPLEX	RW FULL TAKE	ROUNDABOUT FULL TAKE ACCESS IN INTERSECTION OF 22ND AND COLLEGE
80	162+44.84	LT	19^{\prime}	2121,2119 \& 2117 COLLEGE ST. SE	SHARED	RELOCATE	2117 IS ACTUALLY WEST ON 22ND AVE. CONSTRUCT OFF 22ND
81	162+90.29	LT	23^{\prime}			REMAIN	
82	165+52.19	LT	25^{\prime}	2109 COLLEGE ST. SE	CHURCH	REMAIN	DUAL ACCESS - CLOSE TO PED X-ING SIGNAL
83	164+66.30	RT	28^{\prime}			REMAIN	LT/RT IN - RT OUT ONLY (EXISTING)
84	169+16.51	RT	40^{\prime}	1900 COLLEGE ST. SE	SCHOOL	REMAIN	EXIT ONLY - MAIN ACCESS OUT FOR SCHOOL
85	$166+05.13$	LT	22^{\prime}	1921 COLLEGE ST. SE	BUSINESS	RW FULL TAKE	STRUCT. FULL TAKE ACCESS OFF COLLEGE
86	167+31.63	LT	$15{ }^{\prime}$	1915 A \& B COLLEGE ST. SE	DUPLEX	REMAIN	
87	169+08.68	LT	30^{\prime}	1903 COLLEGE ST. SE	DUPLEX	REMAIN	ACCESS IS OFF 19TH AVE. SE ALREADY
88	$171+14.97$	RT	17^{\prime}				DUAL ACCESS OFF COLLEGE - THIS ONE GOES TO GARAGE
89	171+54.34	RT	10^{\prime}	4605 18TH AVE. SE	RESIDENTIAL	CONSOLIDATION	DUAL ACCESS OFF COLLEGE - REMOVE THIS ONE
90	172+29.57	RT	22^{\prime}	4604 18TH AVE. SE	RESIDENTIAL	REMAIN	ACCESS OF 18TH, BUT TIGHT AT INTERSECTION
91	173+06.04	LT	$9 '$	1705 COLLEGE ST. SE	RESIDENTIAL	RW FULL TAKE	STRUCT. FULL TAKE ACCESS OFF COLLEGE
92	174+33.91	LT	118				DUAL ACCESS-THIS IS OFF 17TH

Attachment A - Detailed Driveway Inventory and Revisions

NUMBER	STATION	OFFSET	EXISTING WIDTH	SITE ADDRESS	SITE USE	DRIVEWAY REVISION	COMMENT
93	174+98.51	LT	32	1613 COLLEGE ST. SE	MIN-MART	CONSOLIDATION	DUAL ACCESS-THIS IS OFF COLLEGE - REMOVE BECAUSE OF STRIP TAKE
94	174+84.51	RT	25^{\prime}	4603 17TH AVE. SE	Residential	remain	TIGHT TO INTERSECTION
95	$175+10.42$	RT	34^{\prime}	460417 TH AVE. SE	residential	remain	TIGHT TO INTERSECTION
96	175+66.35	LT	14^{\prime}	1605 CoLLEGE ST. SE	RESIDENTIAL	remain	
97	$176+07.18$	LT	17^{\prime}			RW FULL TAKE	STRUCT. FULL TAKE ACCESS OFF COLLEGE
98	177+41.66	LT	$28{ }^{\prime}$	1601 COLLLEGE ST. SE	BUSINESS	RW FULL TAKE	STRUCT. FULL TAKE ACCESS OF 16TH AVE. SE
99	177+44.64	RT	14^{\prime}	4603 16TH AVE. SE	RESIDENTIAL	RW FULL TAKE	ROUNDABOUT FULL TAKE ACCESS OFF 16TH AVE. SE
100	$177+62.58$	LT	14^{\prime}	4524 16TH AVE. SE	RESIDENTIAL	RW FULL TAKE	ROUNDABOUT FULL TAKE ACCESS OFF 16TH AVE. SE
101	$179+04.43$	LT	18	1507 College st. SE	RESIDENTIAL	remain	
102	177+68.74	RT	$38{ }^{\prime}$	1510 COLLEGE ST. SE	APARTMENT COMPLEX	REMAIN	ACCESS OFF OF 16TH AVE. SE
103	179+32.51	RT	${ }^{2}{ }^{\prime}$	1510 College st. SE	APARTMENT COMPLEX	remain	ACCESS OFF OF COLLEGE
104	180+29.49	RT	31				OFFICE DUAL ACCESS - MAY BE ABLE TO REDUCE TO ONE
105	181+42.47	RT	28^{\prime}	1510 COLLEGE ST. SE	APARTMENT COMPLEX	CONSOLIDATION	OFFICE DUAL ACCESS - MAY BE ABLE TO REDUCE TO ONE
106	182+31.66	RT	24	1510 COLLEGE ST. SE	apartment complex	REMAIN	ACCESS OFF COLLEGE
107	180+22.65	LT	34^{\prime}	4525 15TH AVE SE	RESIDENTIAL	remain	
108	180+44.47	LT	2^{29}				DUAL ACCESS - THIS IS OFF 15TH
109	$181+36.23$	LT	271	1423 COLLEGE ST. SE	RESIDENTIAL	RELOCATE	DUAL ACCESS - THIS IS OFF COLLEGE AND TO GARAGE MAY BE ABLE TO CLOSE
110	181+75.53	LT	18^{\prime}				DUAL ACCESS - THIS IS OFF COLLEGE AND TO GARAGE MAY BE ABLE TO CLOSE
111	182+55.28	LT	15^{\prime}	1419 CoLLEGE ST. SE	RESIDENTIAL	RELOCATE	DUAL ACCESS - THIS IS OFF 14TH WAY
112	182+79.74	LT	21	1415 COLLEGE ST. SE	BUSINESS	REMAIN	ACCESS IS OFF 14TH WAY
113	184+13.72	RT	${ }^{3}{ }^{\prime}$	4601 14TH AVE. SE	RESIDENTIAL	RW FULL TAKE	STRUCT. FULL TAKE ACCESS OFF 14TH AVE. SE
114	184+19.16	LT	29 '	1415, 1407 \& OTHERS COLLEGE ST. SE	E RESIDENTIAL \& BUSIINESS	REMAIN	
115	184+39.88	RT	26^{\prime}	4602 14TH AVE. SE	RESIDENTIAL	RW FULL TAKE	STRUCT. FULL TAKE ACCESS OFF 14TH AVE. SE
116	$185+66.56$	LT	40^{\prime}	1407 COLLEGE ST. SE	BUSINESS	REMAIN	ACCESS IS OFF 14TH AVE. SE
117	185+96.18	LT	10^{\prime}	4560 14TH AVE. SE	RESIDENTIAL	remain	DUAL ACCESS - THIS GOES TO HOUSE
118	186+20.38	RT	20^{\prime}	1328 COLLEGE ST. SE	RESIDENTIAL	RW FULL TAKE	STRUCT FULL TAKE ACCESS OFF COLLEGE
119	186+46.46	RT	10^{\prime}	1326 COLLEGE ST. SE	vacant lot	VACANT	
120	186+84.48	RT	10^{\prime}	1324 COLLEGE ST. SE	VACANT LOT	VACANT	
121	187+35.80	LT	16^{\prime}	RIGHT-OF-WAY	RESIDENTIAL \& BUSIINESS	remain	
122	188+12.21	RT	30^{\prime}	1320 COLLEGE ST. SE	RESIDENTIAL	RW FULL TAKE	STRUCT. FULL TAKE - ACCESS IS OFF 13THCT.
123	188+51.27	RT	70^{\prime}	1308 COLLEGE ST. SE	BUSINESS	RW FULL TAKE	StRUCT. FULL TAKE - ACCESS IS OFF 13TH CT.
124	188+56.19	LT	2^{2}				DUAL ACCESS - THIS GOES TO PARKING LOT
125	189+13.46	LT	18^{\prime}	1307 COLLEGE ST. SE	BUSINESS	CONSOLIDATION	REMOVE, DON' THINK THIS IS USED
126	189+70.48	RT	32	1302 COLLEGE ST. SE	BUSINESS	RW FULL TAKE	DW FULL TAKE UNLESS WE USE 1308 PARCEL AND REBULLD A PORTION
127	190+31.88	LT	40^{\prime}	1303 COLLEGE ST. SE	BUSINESS	REMAIN	ACCESS IS OFF 13TH AVE. SE

Appendix D

Technical Memorandum

Date: October 10, 2008 Rev 4/17/09

To: Martin Hoppe, P.E., PTOE
Company: City of Lacey
Phone: 360.438.2681
Fax: 360.456.7799
Address: 420 College Street SE
Lacey, WA 98509-3400

Project
Name: College Street Improvement Report

Purpose

The purpose of this technical memorandum is (1) present a recommended phasing for improvements to College Street, and (2) to summarize planning-level project cost estimates for each phase.

Summary

We evaluated alternative construction phasing options for improvements to College Street from $37^{\text {th }}$ Avenue SE to Lacey Boulevard. We based the phasing options based on operational benefit and practical project size. First, we gave priority to projects providing more operational benefit. Second, we defined project limits to keep the costs for individual projects between $\$ 1 \mathrm{M}$ and $\$ 5 \mathrm{M}$ (in 2008 dollars), specifically to match a range of project sizes typically funded by grant opportunities. We developed two viable approaches as shown in Attachment A. Note that any of the identified projects could be increased or decreased in scope to match funding opportunities.

Both approaches construct the roundabouts first, and the three roundabouts are ordered by highest entering volumes ($22^{\text {nd }}$ Avenue SE first, 29 ${ }^{\text {th }}$ Avenue SE second, and $16^{\text {th }}$ Avenue SE third). The roundabouts are constructed first to provide u-turn opportunities for properties before center medians are constructed and access points are modified. The segments between roundabouts are ordered from north to south, since the traffic volumes are higher for the northerly segments.

Option 1 has seven phases ranging in cost from $\$ 2.1 \mathrm{M}$ to $\$ 5.7 \mathrm{M}$. Option 2 has five phases ranging in cost from $\$ 3.1 \mathrm{M}$ to $\$ 7.5 \mathrm{M}$.

Table 1
Phasing Options with Phase Costs
Option $1 \quad$ Option 2

Phase	Cost ${ }^{1}$	Description	Phase	$\text { Cost }^{1}$	Description
Phase 1	\$2,050,000	$22^{\text {nd }}$ Ave RAB	Phase 1	\$4,990,000	$22^{\text {nd }} \& 29^{\text {th }}$ RABs
Phase 2	\$2,940,000	$29^{\text {th }}$ Ave RAB	Phase 2	\$7,463,000	$16^{\text {th }}$ RAB/Lacey to $16^{\text {th }}$
Phase 3	\$3,100,000	$16^{\text {th }}$ Ave RAB	Phase 3	\$3,060,000	$16^{\text {th }}$ to $22^{\text {nd }}$
Phase 4	\$4,363,000	Lacey to $16^{\text {th }}$	Phase 4	\$5,736,000	$22^{\text {nd }}$ to $29^{\text {th }}$
Phase 5	\$3,060,000	$16^{\text {th }}$ to $22^{\text {nd }}$	Phase 5	\$4,754,000	$29^{\text {th }}$ to $37^{\text {th }}$
Phase 6	\$5,736,000	$22^{\text {nd }}$ to $29^{\text {th }}$	----	----	
Phase 7	\$4,754,000	$29^{\text {th }}$ to $37^{\text {th }}$	----	----	
TOTALS	\$26,003,000			\$26,003,000	

1. Costs are in 2008 dollars

Background

Existing Conditions

College Street from Lacey Boulevard to $37^{\text {th }}$ Avenue SE is a four-lane National Highway System (NHS) principal arterial with a general right-of-way width of 60 feet. The existing street width is approximately 45 feet from curb to curb. There are narrow sidewalks located along the corridor on each side of the street. The corridor is a built environment fronted by homes, small businesses, apartments, and schools.

College Street provides a primary north-south link for traffic, transit, pedestrians, and bicyclists within the City from south Thurston County to Interstate 5. The corridor currently carries 21,000 (2005 traffic count) and is projected to carry 32,000 vehicles per day by 2020 according to the Lacey Transportation Plan (College Street is identified as a Strategy Corridor in the Lacey Transportation Plan ${ }^{1}$). The corridor also provides local access to many homes fronting the street and

Figure 1 - Vicinity Map provides access to several local streets and collectors.

Traffic is heavy along the corridor and congested during peak hours. Vehicles turning left from College Street to homes or local streets increase congestion by occupying the inside through-lane while waiting for breaks in traffic. There are approximately 130 driveways 24 T -intersections, and four 4 -way intersection collectively generating significant turn volumes. There are high-frequency collision locations along the corridor due to conflicts between turning vehicles and high volumes of through traffic. Narrow sidewalks, high volumes, and a lack of bike lanes discourage use by pedestrians and bicyclists. A lack of

[^8]street amenities (i.e., planter strips/vegetation, decorative street lighting, street furniture) conflicts with community values articulated by City staff and City Council.

Previous Work

Previous study work resulted in a report, "College Street, Evaluation of Options", August 2005. This report documented a comprehensive alternatives analysis that scored and ranked ten options (nine build and one no-build) for improvements to College Street that addressed the corridor needs. The report recommended Option 9 as the preferred option, because it best provides a blend of corridor capacity, neighborhood connectivity, non-motorized uses, and corridor aesthetics. The cross-section included a planted center median to control access and provide space for left-turn lanes at key intersections; wide sidewalks with tree wells to promote walk-ability; space for commuting bicycles; and roundabouts at major intersections to provide intersection control. The overall right-of-way width of 72 feet widens to 76 feet at left-turn lane locations.

The current study work began in February 2008 and consists of the following tasks:

- Alternatives Analysis to define the recommended dimensions of the cross-sectional elements;
- Horizontal Alignment and Right-of-Way to define the recommended alignment;
- Neighborhood Circulation and Access to define recommended changes to street access and/or driveway access; and
- Improvements Phasing Plan to estimate project costs and define recommended phasing for the improvements.

WHPacific prepared an Alternatives Analysis technical memorandum, dated April 11, 2008. The memorandum presented ranges of dimensions for roadway crosssectional elements (median width, leftturn lane width, through-lane width, space for bicyclists, planter/tree well width, and sidewalk width), and recommended a proposed crosssection for College Street for use in subsequent study work. The recommended cross-section is shown

Figure 2 - Recommended Alternative in Figure 2.
WHPacific prepared a Horizontal Alignment and Right-of-Way Limits technical memorandum dated July 29, 2008. The memo recommended aligning the cross-section shown in Figure 2 as follows:

- Segment 1 ($37^{\text {th }}$ Ave SE to $29^{\text {th }}$ Ave SE) - Aligned against the easterly right-of-way line;
- Segment $2\left(29^{\text {th }}\right.$ Ave SE to $22^{\text {nd }}$ Ave SE) - Aligned against the westerly right-of-way line;
- Segment 3 ($22^{\text {nd }}$ Ave SE to $16^{\text {th }}$ Ave SE) - Aligned against the easterly right-of-way line; and
- Segment $4\left(16^{\text {th }}\right.$ Ave SE to Lacey Boulevard SE) - Aligned against the westerly right-of-way line.

Lastly, WHPacific prepared a Neighborhood Circulation and Access technical memorandum dated August 7, 2008. The memo recommended access management strategies (center medians, median-beak locations, driveway modifications, and street connections), and reported traffic operational performance for the recommended roundabout locations.

Median breaks are recommended at the following intersections:

- College Park Apartments
- Montclair Avenue SE
- $27^{\text {th }}$ Lane SE Private
- $18^{\text {th }}$ Ave SE
- Diamond Head Apartments $/ 14^{\text {th }}$ Way SE (west leg)

The potential street connections are as follows:

- Connect Lakeside Drive and Lakeview Drive and connect Muriel Dr to Lakeview Drive
- Connect $17^{\text {th }}$ Ave SE (west leg) to Golf Club Road SE
- Connect $18^{\text {th }}$ Ave SE (east leg) to Judd Street SE

The all legs of the proposed roundabouts are predicted to operate at Level of Service C or better in the Build-Out condition (2030).

Recommended Phasing

Approach

Traffic Operational Benefit

Precedent was given to improvements that provide the best operational benefit. The primary operational deficiency in the corridor is the high number of left-turns degrading through-put and increasing collisions. Controlling access with center medians is the recommended solution. However, we are recommending construction of the roundabouts before the center medians. If the roundabouts are built first, they provide opportunities for vehicles to u-turn as soon as the center-median construction alters access. Therefore, we recommend construction of the roundabouts first. We phased the roundabouts in order of highest traffic volume with $22^{\text {nd }}$ Avenue SE built first, $29^{\text {th }}$ Avenue SE built second, and $16^{\text {th }}$ Avenue SE built third. After the roundabouts we phased the segments (roadway improvements between roundabouts) from north to south, since the corridor experiences the highest volumes at the north end of the corridor.

Rough Order of Magnitude (ROM) Costs for Defining Project Limits

We sought to size the projects between $\$ 1 \mathrm{M}$ and $\$ 5 \mathrm{M}$ in project costs to keep projects are at a practical size for funding and City staffing. We developed rough order of magnitude (ROM) cost estimates to help us define project limits falling within the desired size range. We use the following assumptions/methods to develop the ROM estimates:

- We used right-of-way costs from the Horizontal Alignment and Right-of-Way Limits technical memorandum.
- We used City-provided quantities from the College $/ 45^{\text {th }}$ roundabout project and updated unit costs to current market rates using bid tabs from Mullen Road and other sources to estimate the construction cost for the roundabouts.
- We used project costs from the Mullen Road project to estimate costs for the following items based on prorating the square-footage of pavement for College Street compared to Mullen Road:
- storm drainage; and
- channelization.
- We generated an estimated per linear foot cost for roadway improvements by calculating rough quantities over a mile long road segment with assumptions based on City of Lacey, Development Guidelines and Public Works Standards, July 2005. We also refined our assumptions based a field walk through. We calculated quantities for the following bid items:
- roadway excavation - assumed 1' depth;
- embankment compaction - assumed 1' depth;
- street lights;

```
street trees and tree grates;
median planting (shrubs and plants per square foot costs and street trees);
median irrigation per square foot;
curb and gutter - a percentage of the total distance of the one mile segment;
traffic curb for medians - a percentage of the total distance of the one mile segment;
sidewalks - a percentage of the total distance of the one mile segment;
driveways - a percentage of the total distance of the one mile segment;
driveway approaches;
asphalt and crushed rock based on horizontal alignment comparison cost breakdown from
the Horizontal Alignment and Right-of-Way Limits technical memorandum;
clear and grub;
Puget Sound Energy conversion, joint trench, and electrical conversion;
curb, sidewalk, and driveway removal based on a percentage of the total distance of the
one mile segment; and
- seeding for yards based on assumed impact for excavation and embankment;
```


Findings

Based on traffic operational benefit and project sizing, we recommended the following two options for phasing the improvements to College Street between Lacey Boulevard and 37th Avenue SE.

Option 1

Option 1 has seven phases ranging in cost from $\$ 2.1 \mathrm{M}$ to $\$ 5.7 \mathrm{M}$.

- Phase 1 - construct the roundabout at $22^{\text {nd }}$ Avenue SE;
- Phase 2 - construct the roundabout at $29^{\text {th }}$ Avenue SE;
- Phase 3 - construct the roundabout at $16^{\text {th }}$ Avenue SE;
- Phase 4 - construct the roadway segment between Lacey Boulevard and $16^{\text {th }}$ Avenue SE;
- Phase 5 - construct the roadway segment between $16^{\text {th }}$ Avenue SE and $22^{\text {nd }}$ Avenue SE;
- Phase 6 - construct the roadway segment between $22^{\text {nd }}$ Avenue SE and $29^{\text {th }}$ Avenue SE;
- Phase 7 - construct the roadway segment between $29^{\text {th }}$ Avenue SE and $37^{\text {th }}$ Avenue SE.

Option 2

Option 2 has five phases ranging in cost from $\$ 3.1 \mathrm{M}$ to $\$ 7.5 \mathrm{M}$.

- Phase 1 - construct the roundabouts at $22^{\text {nd }}$ Avenue SE and $29^{\text {th }}$ Avenue SE;
- Phase 2 - construct the roundabout at $16^{\text {th }}$ Avenue SE and the roadway segment between Lacey Boulevard and $16^{\text {th }}$ Avenue SE;
- Phase 3 - construct the roadway segment between $16^{\text {th }}$ Avenue SE and $22^{\text {nd }}$ Avenue SE;
- Phase 4 - construct the roadway segment between $22^{\text {nd }}$ Avenue SE and $29^{\text {th }}$ Avenue SE;
- Phase 5 - construct the roadway segment between $29^{\text {th }}$ Avenue SE and $37^{\text {th }}$ Avenue SE.

Phasing Cost Estimates

Approach

We developed planning-level cost estimates for the recommended phases using the following assumptions and methodologies:

- We used right-of-way costs from the Horizontal Alignment and Right-of-Way Limits technical memorandum.
- We used City-provided quantities from the College $/ 45^{\text {th }}$ roundabout project and updated unit costs to current market rates to estimate the construction cost for the roundabouts.
- We generated quantities for each segment with assumptions per City of Lacey, Development Guidelines and Public Works Standards, July 2005. We also refined our assumptions based a field walk through. We calculated quantities for the following bid items:
- roadway excavation and embankment compaction - generated rough areas per sections from the work performed for cross-section analyses reported in the Horizontal Alignment and Right-of-Way Limits technical memorandum;
street lights;
street trees and tree grates;
median planting (shrubs and plants per square foot costs and street trees);
median irrigation per square foot;
curb and gutter;
- traffic curb for medians;
- sidewalks;
- driveways;
- driveway approaches - based on driveway modifications reported in the Neighborhood Circulation and Access and technical memorandum;
- asphalt and crushed rock based on the work performed for cross-section analyses reported in the Horizontal Alignment and Right-of-Way Limits technical memorandum;
- Puget Sound Energy conversion, joint trench, and electrical conversion;
- storm drainage conveyance based on basic calculations to size facilities;
- storm drainage water quality based on basic calculations to size facilities (including land costs);
- storm drainage outfall assuming existing conveyance systems can handle additional flows;
- channelization;
- curb, sidewalk, and driveway removal; and
- seeding for yards based on estimated excavation.

Findings

The planning-level project costs for the recommended phases are shown in Table 2.
Table 2
Phasing Options with Phase Costs

Option 1			Option 2		
Phase	Cost ${ }^{1}$	Description	Phase	Cost ${ }^{1}$	Description
Phase 1	\$2,050,000	$22^{\text {nd }}$ Ave RAB	Phase 1	\$4,990,000	$22^{\text {nd }} \& 29^{\text {th }}$ RABs
Phase 2	\$2,940,000	$29^{\text {th }}$ Ave RAB	Phase 2	\$7,463,000	$16^{\text {th }}$ RAB/Lacey to $16^{\text {th }}$
Phase 3	\$3,100,000	$16^{\text {th }}$ Ave RAB	Phase 3	\$3,060,000	$16^{\text {th }}$ to $22^{\text {nd }}$
Phase 4	\$4,363,000	Lacey to $16^{\text {th }}$	Phase 4	\$5,736,000	$22^{\text {nd }}$ to $29^{\text {th }}$
Phase 5	\$3,060,000	$16^{\text {th }}$ to $22^{\text {nd }}$	Phase 5	\$4,754,000	$29^{\text {th }}$ to $37^{\text {th }}$
Phase 6	\$5,736,000	$22^{\text {nd }}$ to $29^{\text {th }}$	----	----	
Phase 7	\$4,754,000	$29^{\text {th }}$ to $37^{\text {th }}$	----	----	
TOTALS	\$26,003,000			\$26,003,000	

1. Costs are in 2008 dollars

Attachments

Attachment A - Improvements Phasing Plan, Construction and Right-of-Way Costs - Option 1 and Option 2
Attachment B - Planning-Level Cost Estimate Back-up Data

Tharaby carify this to be a kue and careot tabuktice
of exals recerived and opared on

GRAVEL BORROWINCL. HAUL								
					Volume (c.y.)	Unit Price (cy.)	Cost	Assumptions
Embank. Comp. (c.y.)	982				N/A	\$20.00	N/A	*assume all excavated material can be used forernbankment compactionROADWAY EXCAV $>$ EMRANK COMMP $\Rightarrow>$ NOBORROW
Roadway Excrv. (c.y.)	1827							
				TOTAL $=$	N/A	TOTAL $=$	N/A	

IOPSOIL								
					Volume (c.y.) $=$ likngin x wituth x depth (f ti) $/ 27$	Unit Price (t.y.)	Cost	
Mcelian Area (s.f.) $=$	7160				398	\$35.00	\$13,922	* 18 in $=1.5 \mathrm{ft}$ depth for entire median and roadway edge trees (4 ftwaft tree well) $\rightarrow 16$ sf $\times 69$ tipes $=$ 1104s.f. ${ }^{6} 6$ in $=0.5 \mathrm{ft}$ depth for embankmenk/excavation linits *Roadway Edge Iree Area $=16 \mathrm{gf} \times 69$ traeg= 1104 zt *Embank/Excav Area $=4.5 t \mathrm{t}$ (width) $\times 2235 \mathrm{ft}$ (length) - 1104sf (Raadway Edge Tree Ares) = 9471sf
Median Diopth (ft) $=$	1.5							
Roadway Edge Tree Area (st) =	1104				61	\$35.00	S2,147	
Rosdway Edse Depth (fit) =	1.5							
	8954				166	\$35.00	\$5,803	
Embank/[xcav Depth (t))	0.5							
D/N Remeval (sit) =	13650				253	\$35.00	\$8,847	
DNW Hemoval Depth (tit) =	0.5							
				TOTAL (c.r.) $=$	878	TOTAL $=$	\$30,719	

SEEDING/MULCHING/FERTRZER						Assumptions
			$\begin{aligned} & \hline \text { Area } \\ & \text { (acre) } \end{aligned}$	Unit Price \{acre)	Cost	
Emb3nk/[xcav Acea (s.t.)	8954		0.21	\$8,000.00	\$1,644	Seeding/Mulching/fertilizer alea Embank/Exay
		TOTAL $=$	0.21	TOTAL $=1$	\$1,544	

EECTRICAL CONVERSION								
						Unit Price (ea.)	Cost	Assumptions
12 of Conversions	$=$	14				\$4,000.00	\$56,000	"Counted addresses on "Colloge St, Driveway Tabulation" sheet that tosl within limits of Phase 4FUlL TakEs to obtain number of corversions

PLASTK WIDE LNE										
							Unit Price (1.f.)	Cost	Assumptions	
Length (ti) =	2180						\$1.00	\$2,180	lenyth $=(1200 \times 2) \cdot$ cross street widht	-
					TOTAL $=$	2180	TOTAL $=$	\$2,180	coss street width total $=$ approx 220 ft	

of bris recenved and opened on

Street trees						
			$\#$ of trees	Unit Price (ea.)	Cost	Assumptions
Medion Length \langle ft)	995		28	\$400.00	\$11,371	"tree spacing * 35ft O.C.
Roadway Edge Length (ft) =	2600		74	\$400.00	\$29,714	*trees on both sides of roatway and in median
		TOTAL $=$	103	TOTAL $=$	\$41,086	

SEEDING/MULCHING/FERTILZER						
			$\begin{aligned} & \text { Area } \\ & \text { (acre) } \\ & \hline \end{aligned}$	Unill Price (atre)	Cost	Assumptions
Embark//Excav Area (s.f.) $=$	9607)		0.22	\$8,000.00	\$1,764	Seedine/Mulching/Trertilizer area = Embank/Excav
		TOTAL. $=$	0.22	TOTAL $=$	\$1,764	Area

I hereby certify tis to be a tuo and conrect tazulation
of thiss recoivad and openiedon

I hereby cortily this to be a tive and coneet tobulation
of bids received and opesed on

SEEDING/MULCHING/FERTILIZER						Assumptions
			$\begin{aligned} & \hline \text { Area } \\ & \text { (acre) } \end{aligned}$	Unit Price (acre)	Cost	
Embank/Excav Area (s.f) $=$	$1 \mathrm{1} 0 \times 53$		0.32	\$8,000.00	\$2,581	Seedinf/Muichine/Fertilizer ares = Embank/Excav
		TOTAL $=$	0.32	YOTAL $=$	\$2,581	area

Address									
	3R24as				－＿－riningown				
	width（ft）	$\begin{aligned} & \text { Length }(\mathrm{ft}) \\ & \text { myumma } \\ & \operatorname{l=10\mathrm {c}k} \end{aligned}$	Area（st）	Area（5）	Address	Width（ft）	Length $(f t)$ appose lenght meaured in CAD	Area（sf）	aree（sy）
3incularests	12	In	390	$3{ }^{5}$		2	22	39	咀
390140 31007 Cotcsest3E	3：	10	29919	710	13i colug－5isf	4 L	75	3300	336
	14	10	2081	2	2is colutest5	92	35	312	$3{ }^{3}$
（2）thatilims	訇	10.	$4 \mathrm{4a}$	2）					
5003 10 3499 70 Cgestse	30	30	700］	33					
	33	10	220	21					
	76	10	2615	24					
2rukacacollsesist	既	10	230	31					
cimauctruns extiz	23	10	293	3.					
	16	10	160	19					
	17	10.	130	12					
Spdi Caligecesese	\pm	10	210	21					
29n5 Cillepe Fs SF	18	10	210］	2					
	10.	10	1 mp	11					
3u2t callisessest	$1)^{1}$	10	170	12					
	15.	10.	10．	19					
Gideralny	30	10	109	22					
（tiktmtai－	1 381	7OTAL $=1$	3912］	43 B	$30010740-7$	201	TOTAL－	3915	438
Address	CMAN				FELAEMOVNS				
	Wldth（学）	$\begin{aligned} & \text { Length (tit) } \\ & \text { zasuma } \\ & \text { L- stif } \end{aligned}$	Area（s）	Area（5）	Address	Widit（fit）	Length（ $\boldsymbol{f t}$ ） appoax lirgth ceensured in CaD	Area（5f）	Area（sy）
	78）	10	280	31		IS	51	239	103
2414 callese sast．	11	10	1981	14	2emicaleec5tse	12	31	$5 / 2$	13
2710 Callsab Sis SE	21	29	2 Iul	21	Scoscuimesisf	is．	15	485	3
2717 Culleres Sise	24	10	290i	27	2iscoacresist	12	15	3×8	33
2itucollsegis	19	10	1015	31	Dace colires 5t SE	1	2	3 s	10
27iE Callorcst SE	14	$\underline{12}$	160）	16		ic	27	270	10
2780 Cullege 3 3F	10.	10	201	2 F	20．62 cestre 52.56	27	77	574	56
2pubuthesesist．	18	10	28 B	31	t602 coickestas	24	10．	89	9
27uy culterestse	12	32	1701	16	that Crave 5 St	21.	47	$3 \times$	110
2701 callere 515 SF	19.	30.	194	21					
201／kellesesis	3	10	3 ma	4.1					
27an CallsacstsE	12	10	1201	13					
7eifrullamesisf	$1{ }^{1}$	12	144］	21					
Q61 Cullesestst	26	10.	2 ma	23					
2ufy Coilese StS5	4	10	76	26					
	20.	10.	2017	22					
2fay cillmersist	15	10.	19n］	13					
zisis 2509 colemesty	10.	10	19n－	29					
25mis 2 Scs colleme StSE	34	10	140	36					
2405 ruilez－5isf：	12	10	140	14					
2upy colugesisc．	31	10.	2in	27					
F2ta calcgostise	$3{ }^{3}$	12.	2 CO	22					
	1 439	TOLAL $=1$	4599	510	Sils total－	372	TOTRiL $=$	5192	572
S23 TOECL－									
	HIMND				Fuil Remayal				
Address	Width（il）	$\|$Length（fi） maxime $i=10 \mathrm{i}$	Ares（st）	Ares（sy）	Address	Width（ $(\mathrm{t}$ ）	Lengtin (\mathbb{M}) approx．lengh measured $\ln \mathrm{CAO}$	Area（st）	Area（yy）
	25	14	2.	20		22	125	299］	257
28cocumpersis	38.	191	－ 230	31		10	25	36	78
1500coicestits	4 T	$1{ }^{11}$	－ 406	44	1703 cotioarst：	9	22.	198	2
	15	$2 i$	1.0	17					
Carcarmat	3 n ．	In	306	3 B					
400e zahrines．	12	19	170	$1{ }^{18}$					
1513 Colces St 5	32	10	320	36					
	14	19	140	16					
sulutue\％$=$	201	TOTAI－	3010	223	309TuTat－	41	totan $=1$	22501	906
	METATH					Width（tit）Lenderst			
Address	Width（f）	$\begin{aligned} & \text { Length }(\mathrm{ft}) \\ & \text { sua...00 } \\ & \mathrm{t}=\mathrm{jot} \end{aligned}$	Area（sf）	Area（sy）	Adduress			Area（sf）	Area（5x）
							$\begin{aligned} & \text { approw. Iongt } \\ & \text { messured if CAD } \end{aligned}$		
120y Colbsicest	2.	10	189	30		29	114	228	31
	23	㫛	20.	28		27	10	224	H
1500cili－r cict	1.	10.	310	34	2414 celleselsex	12	－in	16 fn	20
1200culsextys	21	30	26.6	27	decl Collexcsit 3 E	家	4	510．	m
	29	10	29.	32	dan Cailmia st St	III	22	2060	14
minililuex	15	20	150	28		211	15	300	33
	23	10.	220	34	1326 cellicistst	10	2退	268	1
						1 II	－18	284	21
					Widuculezalifio	3 mi		2ase．	320
					yricolerostge	位	43	589	$\underline{617}$
					30TCOMm－tise	17	122	36	44
						37	3.4	1089	121
32.5 TOTA1－	－103	TOTAL $=1$	1250	153	Silertifaio	112	TOTAL	180.0	1517

Appendix E

COLLEGE CORRIDOR STUDY -- PUBLIC INPUT

1. How did you learn about tonight's Open House?
\square Direct Mailing
\square Friend / Neighbor
\square Newspaper
\square Other: \qquad
2. What situation describes you best:
\square I live/work adjacent to College Street
\square I live/work in the general vicinity of College Street
\square I commute along the College Street Corridor
\square Other: \qquad
3. How would you rate the current congestion/safety of College Street?

Mode	Poor	Below Average	Average	Above Average	Excellent
Motor Vehicle	\square	\square	\square	\square	\square
Bicycle	\square	\square	\square	\square	\square
Pedestrian	\square	\square	\square	\square	\square

4. Do you agree with the proposed plan? What changes would you make?
\qquad
\qquad
\qquad
5. What phase would you like to see constructed first?
$1^{\text {st }}$ \qquad
$2^{\text {nd }}$
3 rd \qquad
6. When would you like to see these improvements constructed?

$5-10$ years	\square	$15-20$ years \square
$10-15$ years	\square	$20+\quad \square$

7. Comments / Suggestions?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

November 5, 2008
4:30 to 7:30 pm
Mountain View Elementary School

COLLEGE CORRIDOR STUDY

Public Feedback Summary - Combined from Oct. 9 and Nov. 5

1. How did you learn about tonight's Open House?
\square Direct Mailing (73)

- Newspaper (33)
\square Friend/Neighbor (7)
\square Other: (8)

1. School Flyer (4)
2. Online (2)
3. Radio (1)
4. City Staff (1)
5. What situation describes you best?
\square I live/work adjacent to College St (61)
\square I live/work in the general vicinity of College St (39)
\square I commute along the College Street Corridor (29)
\square Other: (8)
6. Own property on $22^{\text {nd }}$ Ave
7. Walk and Bicycle
8. Have regional focus on alternative transportation
9. Elderly mother lives adjacent to College
10. Sister lives on College
11. Daughter goes to Mt View Elementary
12. Lives on other side of Ruddell
13. unspecified
14. How would you rate the current congestion/safety of College Street?

15. Do you agree with the proposed plan? What changes would you make?
\square Agree (58)

- Disagree (14)

Suggested changes include:

- Increase Bike Lane width (7)
- Signalized intersections instead of Roundabouts (3)
- No Landscaping (3)
- Roundabouts are good solution (3)
- More and/or lighted crosswalks (2)
- Signal at $22^{\text {nd }}$ instead of Roundabout (2)
- Turn Lane instead of Median (2)
- Position Roundabouts where most traffic turns (2)
- Use shrubs instead of trees in median (2)
- Make College a one-way street (2)
- More Bus Shelters and Benches (2)
- Move $16^{\text {th }}$ Roundabout to $14^{\text {th }}$ (1)
- 4-Way Stop at $22^{\text {nd }}$ (1)
- Install Roundabout at $37^{\text {th }}$ (1)
- Turn Lane instead of median between $19^{\text {th }}$ and $22^{\text {nd }}(1)$
- Crosswalks near Bus Stops (1)
- Consider pedestrian overpasses at Mt View and $16^{\text {th }}$ (1)
- Install Roundabout at $\mathbf{2 2}{ }^{\text {nd }}$ as soon as possible (1)
- Green line - connector roads should be priority (1)
- These improvements would be great asset for growth of the community (1)
- Concern about financing given current state of economy (1)

5. What phase would you like to see constructed first if funding becomes available?

The following construction phases are ranked in order of popularity

- Phase 1-22 ${ }^{\text {nd }}$ and College Roundabout
\square Phase 3-16 ${ }^{\text {th }}$ and College Roundabout
\square Phase 2-29 ${ }^{\text {th }}$ and College Roundabout
- Phase 4-Corridor section between Lacey Blvd and $16^{\text {th }}$ Ave
- Phase 5 - Corridor section between $16^{\text {th }}$ and $22^{\text {nd }}$
- Phase 7 - Corridor section between $29^{\text {th }}$ and $37^{\text {th }}$
\square Phase 6 - Corridor section between $22^{\text {nd }}$ and $29^{\text {th }}$

6. Comments/ Suggestions?

Some comments and suggestions include:

- Widen Bike Lanes (4)
- Install Signals instead of Roundabouts (4)
- Drivers do not yield right of way in Roundabouts (4)
- Concern about tax increases (3)
- Make College safer for Pedestrians (3)
cont'd
- Turn Lane instead of Medians (2)
- Install flashing crosswalks (2)
- Reconsider Landscaping due to cost and long term maintenance (2)
- Use shrubs instead of trees in median (2)
- Well conceived plan (2)
- Build as soon as possible (2)
- Interest in environmental impact (2)
- Lower Speed Limit (2)
- Elderly and young drivers not familiar with Roundabouts (1)
- Install flashers in Pedestrian crossings at Roundabouts (1)
- Make Bus Stops and Public Transportation more attractive (1)
- Concern about emergency vehicles once improvements completed (1)
- How will traffic be affected during construction? (1)
- Open up dead ends on side streets (1)
- How is property value affected? (1)
- Concern about increased traffic noise (1)
- Address need for Pedestrian education (1)
- Much needed project to alleviate congestion and increase safety (1)
- Roundabouts are a waste of tax dollars (1)
- Existing street adequate except for cross traffic turns (1)
- Street tree additions, especially in median, look good (1)
- Encourage more use of Ruddell, Carpenter, and Boulevard (1)
- Incorporate Pedestrian overpasses (1)
- Extend school zones (1)
- What is the progress of the Mullen Rd extension?
- Thanks for being so prepared, and having so many available to answer questions. (1)
- I trust a red light more than a yield sign to stop traffic for children (1)
- Thanks for the opportunity to see what's going on (1)
- Make the left hand turnouts long enough for at least 4 cars (1)
- Provide right turn only lane from Lacey Blvd to College southbound (2)
- Provide as many as possible left turns (1)
- How many million will it cost and who will pay for it? (1)
- I agree with the plan 100%, it is very much needed (1)
- I would like to see fewer roundabouts in Lacey, not more (1)
- School Bus movements should be considered (1)
- Leave the midblock crosswalk at the School (1)
- As is, College St is dangerous and poorly lit (1)

Appendix F

Technical Memorandum

Date:	December 10, 2008 Rev 4/17/09	RE:	Bike Lane Technical Memorandum
To:	Martin Hoppe, P.E., PTOE	From:	Scott Sawyer, P.E.
Company:	City of Lacey	Title:	Sr. Project Manager
Phone:	360.438 .2681	Phone:	360.918.5305
Fax:	360.456.7799	Fax:	360.754.1195
Address:	420 College Street SE		
	Lacey, WA 98509-3400	Project \#:	34709
		Project Name:	College Street Improvement Report

Purpose

The purpose of this technical memorandum is (1) to address the public opinions concerning the space provided for bicycles, and (2) to present the costs associated with widening the roadway four feet to provide space for a Class II, five-foot wide bike lane.

Summary

The City of Lacey held public open houses on October 9 and November 5, 2008 to present the preferred design for College Street and to give opportunity for the public to voice comments and concerns. The City received some public concerns about the width provided for bicycles.

Because of these public concerns, the City asked WHPacific to prepare cost estimates for increasing the curb to curb width to provide space for a Class II bike lane. We estimate the total additional costs at $\$ 1.7 \mathrm{M}$ to provide Class II bike lanes. Also, the five-foot bike lanes require full parcel acquisition of three additional homes sites.

Background

Previous Work

Previous study work resulted in a report, "College Street, Evaluation of Options", August 2005. This report documented a comprehensive alternatives analysis that scored and ranked ten options (nine build and one no-build) for improvements to College Street that addressed the corridor needs.

Figure 1 - Vicinity Map The report recommended Option 9 as the preferred option, because it best provides a blend of corridor capacity, cost, neighborhood connectivity, nonmotorized uses, and corridor aesthetics. The cross-section included a planted center median to control access and provide space for left-turn lanes at key intersections; wide sidewalks with tree wells to
promote walk-ability; space for commuting bicycles; and roundabouts at major intersections to provide intersection control. The overall right-of-way width of 72 feet widens to 76 feet at left-turn lane locations.

The current study work began in February 2008 and consisted of the following tasks:

- Alternatives Analysis to define the recommended dimensions of the cross-sectional elements;
- Horizontal Alignment and Right-of-Way to define the recommended alignment;
- Neighborhood Circulation and Access to define recommended changes to street access and/or driveway access; and
- Improvements Phasing Plan to estimate project costs and define recommended phasing for the improvements.

WHPacific prepared an Alternatives Analysis technical memorandum, dated April 11, 2008. The memorandum presented ranges of dimensions for roadway crosssectional elements (median width, leftturn lane width, through-lane width, space for bicyclists, planter/tree well width, and sidewalk width), and recommended a proposed crosssection for College Street for use in subsequent study work. The

Figure 2 - Recommended Alternative recommended cross-section is shown in Figure 2.

The Alternative Analysis technical memorandum recommended shared roadways with a 14 -foot outside lane for two principal reasons, (1) there is a multi-use trail (Chehalis-Western Trail) paralleling the corridor to the west, and (2) the 14 -foot outside lanes reduce right-of-way impacts - less home displacements and less costs. The recommendation was supported by the expectation most bicyclists will be Type A users (advanced or experienced riders), as defined by the AASHTO, Guide for the Development of Bicycle Facilities. The recommended width matches bike routes on shared roadways used by the City of Lacey (enhanced Class III routes).

The Alternative Analysis technical memorandum recommended 11 -foot travel lanes as a practical minimum width (since the 10 -foot lanes provide no buffer for trucks and/or buses considering their width from outside of mirror to outside of mirror).

WHPacific subsequently prepared a Horizontal Alignment and Right-of-Way Limits technical memorandum, dated July 28, 2008, to determine the horizontal alignment with the least impact to right-of-way for the cross-section shown in Figure 2.

The least impactful horizontal alignment by segment is:

- Segment 1 - Aligned against the existing easterly right-of-way line;
- Segment 2 - Aligned against the existing westerly right-of-way line;
- Segment 3 - Aligned against the existing easterly right-of-way line; and
- Segment 4 - Aligned against the existing westerly right-of-way line.

[^9]
Cost Evaluation

Approach

We evaluated the additional costs for widening the curb to curb dimension to provide space for Class II bike lanes. We used the same approach for determining the least impactful horizontal alignment as documented in the Horizontal Alignment and Right-of-Way Limits technical memorandum. We widened the overall right-of-way width from 82 to 86 feet to provide additional space for the bike lanes.

Findings

The least impactful horizontal alignment is not affected by the additional right-of-way width. The alignment by segment remains as stated above.

The five-foot bike lanes require full parcel acquisition of 3 more home sites. The bike lanes also add construction costs (additional roadway and minor retaining walls behind the sidewalks), and right-of-way costs.

The three additional full parcel acquisitions are shown in Tables 1 and 2. The estimated construction costs are approximately $\$ 500,000$. The estimated right-of-way costs at roughly $\$ 1.20 \mathrm{M}$ are shown in Table 3.

We recommend $\$ 1.7 \mathrm{M}$ as a reasonable planning level estimate to provide five-foot bike lanes. This equates to approximately $\$ 210$ per linear foot using a project length of 8,100 feet.

Table 1
Full Parcel Acquisitions for Structures and/or Driveways Impacted (Including Roundabouts)

Segment	Current Full Takes	Additional Full Takes	Evaluated Full Takes
1	3	1	4
2	8	2	10
3	5	0	5
4	7^{1}	0	$\mathbf{7}^{1}$
Total	$\mathbf{2 3}$	$\mathbf{3}$	$\mathbf{2 6}$
1. Assumes a full parcel acquisition is not required for the apartment buildings at 1510	College Street SE, assuming three		
building can be remodeled to remove six end units.			

Table 2
Additional Full Parcel Acquisitions Due to Bike Lane Widening ${ }^{1}$

Parcel Number	Site Address	Existing Parcel (SQFT)
58090006700	$451329^{\text {th }}$ Court SE	10,693
84850000100	2602 College Street SE	21,162
11828220205	$480527^{\text {th }}$ Lane SE	5,283

1. Each parcel is impacted by encroachment on an existing structure.

Table 3
Estimated Right-of-Way Acquisition Costs (Including Roundabout Impacts)

Segment	Current Cost	Additional Cost	Evaluated Cost
1	$\$ 1,501,194$	$\$ 374,701$	$\$ 1,875,895$
2	$\$ 3,042,376$	$\$ 747,998$	$\$ 3,790,374$
3	$\$ 1,912,530$	$\$ 61,164$	$\$ 1,973,694$
4	$\$ 3,141,860$	$\$ 20,703$	$\$ 3,162,563$
Total	$\$ 9,597,960$	$\$ 1,204,566$	$\$ 10,802,526$

[^0]: ${ }^{1}$ City of Lacey, 2004 Lacey Transportation Plan, page 55.

[^1]: ${ }^{1}$ City of Lacey, 2004 Lacey Transportation Plan, page 55.

[^2]: ${ }^{6}$ AASHTO, Policy on Geometric Design of Highways and Streets, $5{ }^{\text {th }}$ Edition, 2004, Page 473.
 ${ }^{7}$ City of Lacey, Development Guidelines and Public Works Standards, Street Design Arterial - DWG NO. 4-2.2.
 ${ }^{8}$ AASHTO, Policy on Geometric Design of Highways and Streets, $5^{\text {th }}$ Edition, 2004, Page 472-473.
 ${ }^{9}$ Ibid.
 ${ }^{10}$ Ibid.
 ${ }^{11}$ City of Lacey, Development Guidelines and Public Works Standards, Street Design Arterial - DWG NO. 4-2.2.
 ${ }^{12}$ AASHTO, Guide for the Development of Bicycle Facilities, 1999, page 6.
 ${ }^{13}$ Ibid, at Bikeway Classes - DWG NO. 4-16.
 ${ }^{14}$ City of Lacey, 1998 Lacey Transportation Plan, Figure 5.

[^3]: ${ }^{15}$ AASHTO, Guide for the Development of Bicycle Facilities, 1999, pages 16-17.
 ${ }^{16}$ Federal Highway Administration (FHWA), Bicycle Lanes Versus Wide Curb Lanes: Operational and Safety Finding and Countermeasure Recommendations, October 1999, page 23.
 ${ }^{17}$ Michael Amsden and Thomas Huber, Bicycle Crash Analysis Using Crash Typing Tools and Geographic Information Systems, (Wisconsin DOT Final Report No. 0092-05-18, June 2006), page 19.
 ${ }^{18}$ Transportation Improvement Board, http://www.tib.wa.gov/Sustainability/NewCriteria.htm.
 ${ }^{19}$ City of Lacey, Development Guidelines and Public Works Standards, Tree Well and Grate - DWG NO. 4-30.
 ${ }^{20}$ Ibid, at Street Design Arterial - DWG NO. 4-2.2.
 ${ }^{21}$ Ibid.

[^4]: ${ }^{22}$ CH2M Hill for the City of Lacey, "College Street, Evaluation of Options", August 2005
 ${ }^{23}$ AASHTO, Policy on Geometric Design of Highways and Streets, $5^{\text {th }}$ Edition, 2004, Page 472.
 ${ }^{24}$ City of Lacey, Development Guidelines and Public Works Standards, Street Design Arterial - DWG NO. 4-2.2.

[^5]: ${ }^{1}$ City of Lacey, 2004 Lacey Transportation Plan, page 55.

[^6]: 1. The cost differences for these segments are based on the limits of available survey data, not the actual segment length.
[^7]: ${ }^{2}$ Miller, Angelea, e-mail (College Street Right-of-Way Costs), March 2008.
 ${ }^{3}$ Lovgren, Paul, phone conversation, March 2008.
 ${ }^{4}$ City of Lacey, Development Guidelines and Public Works Standards, July 2005, page 4-45.

[^8]: ${ }^{1}$ City of Lacey, 2004 Lacey Transportation Plan, page 55.

[^9]: 2AASHTO, Guide for the Development of Bicycle Facilities, 1999, page 6.

