# Williams Crossing

Preliminary Stormwater Site Plan Report

March 6, 2024

Prepared for

### Sage-Lacey I, LLC 9505 19th Avenue SE, Suite 118 Everett, WA 98208

Submitted by

ESM Consulting Engineers, LLC 33400 8th Avenue S, Suite 205 Federal Way, WA 98003

Laura Bartenhagen, P.E. (253) 838-6113 laura.bartenhagen@esmcivil.com



www.esmcivil.com



03/06/2024

### **Table of Contents**

| 1. | Proposed Project Description                      | 3  |
|----|---------------------------------------------------|----|
| 2. | Existing Conditions Description                   | 13 |
| 3. | Vicinity Analysis and Subbasin Description        | 14 |
| 4. | Flow Control and Water Quality Facility Sizing    | 16 |
| 5. | Aesthetic Considerations for Facilities           | 20 |
| 6. | Conveyance System Analysis and Design             | 21 |
| 7. | Covenants, Dedications, Easements                 | 22 |
| 8. | Agreements and Guarantees                         | 23 |
| 9. | Other Permits or Conditions Placed on the Project | 24 |

### Figures

| 1.1 | Vicinity Map                 |
|-----|------------------------------|
| 1.2 | Existing Conditions          |
| 1.3 | Proposed Conditions          |
| 1.4 | Web Soil Survey              |
| 3.1 | Downstream Analysis Flowpath |

### Appendices

| Α. | Hydraulic / Hydrologic Analysis and Modeling Results |
|----|------------------------------------------------------|
| В. | Other Reports                                        |

### Project Engineer's Certification (City of Lacey)

I hereby state that this Drainage Control Plan for Williams Crossing has been prepared by me or under my supervision and meets the standard of care and expertise which is usual and customary in this community for professional engineers. I understand that the City of Lacey does not and will not assume liability for the sufficiency, suitability, or performance of drainage facilities prepared by me.

### 1. PROPOSED PROJECT DESCRIPTION

The proposed Williams Crossing project is located north of the intersection of 15<sup>th</sup> Avenue NE & Century Court NE within Section 09, Township 18 North, Range 01 West, W.M.), 5216, 5224, & 5228 NE 15th Avenue, City of Lacey, WA 98516. The site is located on parcels 11809310100, 11809310700 and 11809310600 with 18.7 acres of split-zoned property that is zoned High Density Residential District (HD), Moderate Density Residential District (MD) and the Low Density Residential (LD 0-4) in the City of Lacey. The existing site is generally forested on the north side of the site with cleared areas in the south containing lawn, limited tree coverage, and an existing single-family residence (located on parcel 11809310600). The south region of the site is proposed to be cleared and the existing single-family home will be demolished for the development of 12 apartment buildings (262 units) with associated parking, utility services, and stormwater facilities.

This project has been designed in accordance with the City of Lacey 2022 Stormwater Design Manual (SWM). Refer to Figure 1.1 and 1.3 for a vicinity map and proposed conditions, respectively.

Flow control mitigation will be achieved with an onsite stormwater infiltration facility. Runoff from all improvements onsite will be collected and conveyed to this facility for full infiltration. Refer to Section 5 of this report for more information.

Water quality treatment is required for this project and will be provided through the use of a StormFilter cartridge system as well as infiltration. Refer to Section 4 of this report for more information.

A Geotechnical Engineering Report was prepared by GeoResources, LLC, dated March 26, 2020, for this project that documents site-specific soil stratigraphy and groundwater conditions. Based on the report, some of the soils located onsite are suitable for infiltration at a recommended preliminary infiltration rate of 4 inches per hour. An infiltration evaluation was performed by Earth Solutions NW, LLC on February 13, 2024, which recommends 3 inches per hour for test pit 2. This infiltration rate will be used for the proposed development as it also provides water quality treatment. The geotechnical reports are included in Appendix B.

### Discussion of Core Requirements

All core requirements apply to the new and replaced hard surfaces and converted vegetation areas, according to Figure 2.1 from the SWM. Below, each core requirement is listed and how the project satisfies them. Additionally, the SWM follows the Best Management Practice (BMP) numbering of the current Ecology SWMMWW so BMPs referenced within this report will also use the Ecology BMP numbering (example: BMP T5.13 - Post-Construction Soil Quality and Depth).

#### Core Requirement #1 - Preparation of Stormwater Site Plans

This document fulfills the requirements of a preliminary Stormwater Site Plan to be finalized with construction plans.

### Core Requirement #2 - Construction Stormwater Pollution Prevention

The Construction Stormwater Pollution Prevention Plan (SWPPP) and clear and grade Temporary Erosion and Sediment Control (TESC) plans will be provided under separate cover with the final version of this report.

### Core Requirement #3 - Source Control of Pollution

There are no pollutants expected from construction activities. The construction equipment will have spill prevention kits to prevent hydraulic fluids from spilling onto the project site.

#### Core Requirement #4 - Preservation of Natural Drainage Systems and Outfalls

Any runoff generated by the site itself (in the existing condition) infiltrates based on the geotechnical reports provided for the project site. Stormwater from the project site will be collected and conveyed to an onsite infiltration facility located downstream of developed site areas. This project will not alter the downstream runon collection system.

### Core Requirement #5 - On-site Stormwater Management

Figure 2.3 of the SWM was followed to determine to what extent and what onsite BMPs are necessary. A copy of this figure is provided at the end of Section 1 in this report. The project triggers Core Requirements 1 - 9. The project chooses to meet the Low Impact Development (LID) performance standard and is required to apply soil preservation and amendments. The project is not required to meet the BMPs in List #1, List #2, or List #3.

The LID performance standard requires that stormwater discharges match developed discharge durations to pre-developed durations for the range of predeveloped discharge rates from 8 percent of the 2-year peak flow to 50 percent of the 2-year flow according to Chapter 2.2.5 of the SWM.

This LID performance standard can be met through any flow control BMP(s) desired to achieve the LID Performance Standard and must also apply the post-construction soil quality and depth BMP. Projects selecting this option cannot use rain gardens. To meet the LID performance standard, an infiltration pond will be utilized to fully infiltrate runoff from onsite project areas.

Below is a discussion of the proposed BMPs in place to manage stormwater. In summary, BMP T5.13: Post-Construction Soil Quality and Depth and Infiltration are

the On-site Stormwater Management BMPs, for which the project will amend with imported topsoil.

Amend with Imported Topsoil

Lawn areas - amend to 3-5% organic content. Use imported topsoil mix comprised primarily of sand or sandy loam and containing 3-5% organic matter (typically ~25% compost).

- Scarify or till existing subgrade in two directions to a 6-inch depth
- Place 3 inches of topsoil mix on surface.
- Water or roll to compact soil to 85% maximum.
- Rake smooth and remove surface rocks over 1 inch in diameter.

Landscape areas - amend to 10% organic content. Use imported topsoil mix comprised primarily of sand or sandy loam and containing 10% organic matter (typically ~40% compost).

- Scarify or till existing subgrade in two directions 6-inch depth.
- Place 3 inches of topsoil mix on surface and till into 2 inches of soil.
- Place additional 3 inches of topsoil mix on the surface to achieve a finished, uncompacted depth of 12 inches.
- Rake smooth and remove surface rocks over 2 inches in diameter.
- Mulch planting beds with 2 inches organic mulch.

### Core Requirement #6 - Runoff Treatment

The project is located within the Palm Street basin, which has issues with bacteria fecal coliform and dissolved oxygen. The project will fully mitigate collected stormwater runoff from onsite project areas with Enhanced Basic water quality treatment through implementation of StormFilters using PhosphoSorb Media as shown on the plans as well as through infiltration.

### Core Requirement #7 - Flow Control

The project will mitigate all collected stormwater runoff by use of full infiltration. As a result, the project causes less than a 0.15 cubic feet per second (cfs) or greater increase in the 100-year flow frequency, as estimated using an approved continuous simulation model and 15-minute time steps. Therefore, the project is exempt from core requirement #7.

### Core Requirement #8 - Wetlands Protection

Two wetland units (Wetland A & B) are present on the site and are connected offsite to the north of the property which and considered as one wetland (Category III with a 110-foot buffer). The project improvements are located approximately 280 feet away from the limit of the nearest wetland unit. The requirement for wetland protection applies to projects whose stormwater discharges into a wetland, either directly or indirectly, through a conveyance system. This project does not meet that criterion. Stormwater from the project will be treated by fully infiltrating all site stormwater from

onsite project areas. Precautions will also be taken during construction to ensure the wetland is not adversely impacted by construction activities.

### Core Requirement #9 - Operations and Maintenance

The Operations and Maintenance Manual will be included with the final version of this report.

### Special Reports and Studies

The following relevant reports have been prepared for the project and are included with this submittal in Appendix B.

- Geotechnical Engineering Report by GeoResources, LLC., dated March 26, 2020.
- Wetland And Stream Report Williams Crossing Project by David Evans and Associates, Inc, dated September 27, 2023.
- Infiltration Evaluation by Earth Solutions NW, LLC, dated February 13, 2024.

### Figure 1.1 - Vicinity Map



Map Created Using GeoData Public Website Published: 12/12/2023

Note:

Roads (Large Scale)

- Railroads

County Border



The information included on this map has been compiled by Thurston County staff from a variety of sources and is subject to change without notice. Additional elements may be present in reality that are not represented on the map. Ortho-photos and other data may not align. The boundaries depicted by these datasets are approximate. This document is not intended for use as a survey product. ALL DATA IS EXPRESSLY PROVIDED 'AS IS' AND 'WITH ALL FAULTS'. Thurston County makes no representations or warranties, express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. In no event shall Thurston County be liable for direct, indirect, incidental, consequential, special, or tot damages of any kind, including, but not limited to, lost revenues or lost profits, real or anticipated, resulting from the use, misuse or reliance of the information contained on this map. If any portion of this map or disclaimer is missing or altered, Thurston County removes itself from all responsibility from the map and the data contained within. The burden for determining fitness for use lies entirely with the user and the user is solely responsible for understanding the accuracy limitation of the information contained in this map. Authorized for 3rd Party reproduction for personal use only.



:: \\esm8\ENGR\ESM-JOBS\234! ++od: 3.7.4.700.2.10:53.20M

|          |                    |                                    |                                                                  |                                                                      | n                                                                            |      | NO. DESCRI                         | PTION/DATE                | BY               |
|----------|--------------------|------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|------|------------------------------------|---------------------------|------------------|
|          |                    |                                    |                                                                  |                                                                      |                                                                              |      |                                    |                           | +                |
|          |                    |                                    |                                                                  |                                                                      |                                                                              |      |                                    |                           | +                |
|          |                    |                                    |                                                                  |                                                                      | Φ                                                                            |      |                                    |                           |                  |
|          | · · ·              |                                    | · · _                                                            |                                                                      | - <b>-</b>                                                                   |      |                                    |                           |                  |
|          | IFC                | 3FND                               |                                                                  |                                                                      |                                                                              |      |                                    |                           |                  |
|          | <u>к</u>           | FENCE GAT                          | E END                                                            |                                                                      |                                                                              |      |                                    |                           |                  |
|          | •☆<br>□            | LIGHT POS <sup>-</sup><br>MAIL BOX | T WITH ARM                                                       |                                                                      | $\mathbf{D}$                                                                 |      | Summer Street                      | YT.LEN                    |                  |
|          |                    | STREET SIG                         | GN                                                               |                                                                      |                                                                              |      | ZA C                               | A READ A                  | NUCL N           |
|          | Ø                  | POWER CO                           | NDUIT                                                            | SCA                                                                  | LE: 1" = 50'                                                                 |      | PROFILE                            | 44925<br>GISTER           | 5                |
| 1        | P(<br>P <b>-</b> ● | POWER GU                           | Y ANCHOR<br>Y POLE                                               | 50 25                                                                |                                                                              |      | Sourceson                          | AL LAND SU                | 200              |
|          | PB                 | POWER JUI                          | NCTION BOX                                                       | CONTO                                                                | $UR INT ERVAL = 2^{T}$                                                       |      | ı—                                 | 00                        |                  |
|          | ⊠<br>-Ô-           | POWER ME<br>POWER PO               | ter<br>Le with Drop                                              | (▲) <sub>BC</sub>                                                    | FOUND BRASS CAP<br>FOUND CONCRETE MONUMENT                                   |      | TL C                               | <b>838–611</b><br>297–990 | ecture           |
|          | фф                 | POWER PO<br>AND TRANS              | LE WITH DROP, LIGHT<br>SFORMER                                   | $\oplus$                                                             | FOUND MONUMENT IN CASE                                                       |      |                                    | (253)<br>(425)            | Ing<br>Archit    |
|          | -\$-<br>           | POWER PO                           | LE WITH DROP AND LIGHT<br>ICH BASIN                              | <b>+</b>                                                             | SET NAIL                                                                     |      | <u>Е Р (</u>                       | NL WAY                    | riarii<br>scape  |
|          | )<br>m             | STORM CUI                          |                                                                  | Ô                                                                    | SET PK<br>TELEPHONE MANHOLE                                                  |      | ш 🌐<br>z                           | FEDERA<br>LYNNW(          | Lands            |
|          | s<br>S             | SANITARY S                         | SEWER MANHOLE                                                    | -O-                                                                  | TELEPHONE POLE                                                               |      | N G I                              |                           |                  |
|          | o <sup>COS</sup>   | SANITARY S                         | SEWER CLEANOUT<br>CENTERLINE RIGHT OF WAY                        | <b>※</b>                                                             | FIR                                                                          |      | <u>G</u> П<br>uite 2(<br>8003      |                           | ment             |
|          |                    |                                    | SECTION LINE                                                     | <b>₽</b>                                                             | HOLLY<br>WATER FIRE HYDRANT                                                  |      | N I N (<br>S, S)<br>WA 9           |                           | /eyıny<br>anageı |
|          |                    |                                    | EDGE OF RIGHT OF WAY<br>ADJACENT PROPERTY LINES                  |                                                                      | WATER IRRIGATION CONTROL VALVE                                               |      | UL <sup>-</sup><br>h Ave<br>Nay, ' | cor                       | d our<br>ject M  |
|          |                    |                                    | SURVEY BOUNDARY                                                  |                                                                      | WATER METER<br>WATER VALVE                                                   |      | ONS<br>100 8t<br>deral V           | civil.                    | Proj             |
|          |                    |                                    | ROAD STRIPING                                                    | FO                                                                   | PRIVATE WELLHEAD                                                             |      | 334<br>760                         | , smo                     |                  |
|          |                    |                                    | CURB LINE<br>GRADE BREAK                                         | G                                                                    | GAS UNDERGROUND                                                              |      | Σ                                  | €.<br>N                   | ering            |
| <b>—</b> |                    | ····                               | STORM DITCH                                                      | P                                                                    | POWER STRUCTURE<br>POWER UNDERGROUND                                         |      |                                    | ×.                        | ngiri€<br>Vork   |
| ][       |                    | _][                                | BOARD FENCE                                                      | ——————————————————————————————————————                               | - OHP POWER OVERHEAD                                                         |      |                                    | L<br>                     | ublic<br>ublic   |
|          |                    |                                    | CHAIN LINK FENCE<br>GUARD RAIL                                   |                                                                      | SANITARY SEWER FORCE MAIN                                                    |      |                                    | (                         | ר כ              |
|          |                    |                                    | EDGE RIP RAP                                                     | D                                                                    |                                                                              |      |                                    |                           | STON             |
|          |                    |                                    | EDGE LANDSCAPING<br>EDGE GRAVEL                                  | T                                                                    | TELEPHONE UNDERGROUND                                                        |      |                                    |                           | SHING            |
|          | $\gamma\gamma$     | $\gamma\gamma\gamma\gamma$         | EDGE VEGETATION                                                  | W                                                                    | WATER UNDERGROUND                                                            |      |                                    |                           | WAS              |
|          |                    |                                    |                                                                  | RIZONTAL DAT                                                         | UM:                                                                          |      |                                    |                           |                  |
|          | _                  |                                    | NAD 83/2011) UTILIZ<br>(WSRN) IN JULY OF 2                       | ING THE WASHINGTON S<br>2023.                                        | TATE REFERENCE NETWORK                                                       |      |                                    | (「)                       |                  |
|          |                    |                                    |                                                                  | RTICAL DATUM                                                         | D 88) AND THEN LOWERED                                                       |      |                                    | ž                         |                  |
|          |                    |                                    | 3.41' TO NGVD 29 H<br>CONVERSION UTILIZED                        | DURING TOPOGRAPHIC                                                   | OAST'S VERTICAL DATUM<br>MAPPING, VERIFIED BY ESM.                           |      |                                    |                           |                  |
|          |                    |                                    |                                                                  |                                                                      |                                                                              |      |                                    | ()                        |                  |
|          |                    |                                    | 20–108141–TC RECO<br>NOS. 4804473 AND 4                          | RDED DECEMBER 1, 20<br>804474;                                       | 20 UNDER RECORDING                                                           |      |                                    | $\hat{\mathbf{O}}$        | SNC              |
|          |                    |                                    | IN THURSTON COUNTY                                               | , WASHINGTON                                                         |                                                                              |      | -<br>-                             | ř                         | DITIC            |
|          |                    |                                    | SURVEY INST                                                      | RUMENTATION                                                          | :<br>H THIS SURVEY DOCUMENT                                                  |      | Ш                                  | <u> </u>                  | OND              |
|          |                    |                                    | UTILIZED ALL OR A P<br>FIELD TRAVERSE                            | ORTION OF THE FOLLOW                                                 | VING EQUIPMENT:<br>ATION SATELLITE SYSTEM                                    |      | AO                                 |                           | C<br>C           |
|          |                    |                                    | (GNSS)<br>ELECTRONIC TOT/                                        | AL STATIONS, INCLUDING                                               | TOPCON PS-103A,                                                              |      |                                    | 5                         | TIN              |
|          |                    |                                    | LEICA TCRA 1105<br>TRIMBLE R8, TOF                               | 5 PLUS, TRIMBLE S5.<br>PCON GR-5 GNSS EQU                            | PMENT.                                                                       |      | Ш<br>(Л)                           | 2                         | XIS              |
|          |                    |                                    | FARO FOCUS S3                                                    | 50 LASER SCANNER.                                                    |                                                                              |      | ЭА<br>А                            | 4                         | ш                |
|          |                    |                                    | PROCEDURE USED : F<br>STANDARDS AS OUTLIN<br>ALL INSTRUMENTS MA  | TELD TRAVERSE WORK<br>NED IN WAC-332-130-<br>NTAINED TO MANUFACTI    | COMPLIES WITH CURRENT<br>070, —080 AND —090.<br>JRER'S SPECIFICATIONS AS     |      |                                    |                           |                  |
|          |                    |                                    | SUBVEY NOT                                                       | 52-130-100.<br>ES·                                                   |                                                                              |      |                                    |                           |                  |
|          |                    |                                    | 1. THE EAST BOUNDA<br>HEREON AS WELL AS                          | RY OF THE SUBJECT P<br>SHOWN ON SHORT SU                             | ROPERTY AS DEPICTED                                                          |      |                                    | 3                         |                  |
|          |                    |                                    | THURSTON COUNTY R<br>CONVEYED BY QUIT C<br>728418. WHEREIN TH    | ECORDING NO. 112610<br>LAIM DEED, THURSTON<br>E OWNER(S) OF THE A    | B, WAS ESTABLISHED AND<br>COUNTY RECORDING NO.<br>DJACENT PLATTED LOTS       |      |                                    |                           |                  |
|          |                    |                                    | AND TRACTS TO THE<br>711874) CONVEYED A<br>THE OWNERS OF THE     | EAST (WÒÓDLAND CREE<br>STRIP OF LAND ALON<br>PROPERTY ABUTTING 1     | EK ADD. DIV. TWO, REC. NO.<br>G THE SECTION LINE TO<br>TO THE WEST, THE      |      |                                    |                           | ACEY             |
|          |                    |                                    | DIMENSIONS OF WHIC<br>OVERLAPS WERE OBS                          | H ARE SHOWN HEREON<br>ERVED DURING THE CO                            | . THEREFORE, NO GAPS OR<br>URSE OF THIS SURVEY.                              |      |                                    |                           | JF LZ            |
|          |                    |                                    | 2. TOPOGRAPHIC SUR<br>PREPARED BY MOUNT<br>2020 AND VERIFIED [   | VEY MAPPING CONTAINE<br>AIN 2 COAST LAND SUI<br>BY ESM CONSULTING EN | D HEREON WAS ORIGINALLY<br>RVEYING IN NOVEMBER OF<br>NGINEERS IN JULY, 2023. |      |                                    |                           |                  |
|          |                    |                                    | 3. SURVEY REFERENC<br>- BOUNDARY LI                              | ES DOCUMENTS:<br>NE ADJUSTMENT BLA 20                                | D-108141-TC, THURSTON                                                        |      | JOB NO.:                           | 2345-002                  | -023             |
|          |                    |                                    | COUNTY REC.<br>– SHORT SUBDI<br>REC.NO. 1126<br>POUNDATION       | NU. 48044/4.<br>VISION NO. SS-1563, 7<br>5108.                       | THURSTON COUNTY                                                              |      | DWG. NAM                           | 1E: E                     | X-01             |
|          |                    |                                    | - BOUNDARY LI<br>REC. NO. 87<br>- PLAT OF WOO                    | NE ADJUSIMENI BLA-0<br>12150041.<br>DDLAND CREEK ADD. DIV<br>1874    | /. TWO, THURSTON COUNTY                                                      |      | DESIGNED                           | ыт:<br>1:                 | LGB<br>JJH       |
|          |                    |                                    | REC. NO. 71<br>– QUIT CLAIM D                                    | EED, THURSTON COUNT                                                  | Y REC. NO. 728418.                                                           |      | CHECKED<br>DATE:                   | BY:<br>03/06/             | 2024             |
|          |                    |                                    | IN THE FIELD BY APP<br>2023. THE LOCATIONS<br>APPROVIMATE AND ST | OULD REVERIED IN                                                     | RVICES (APS) IN JULY<br>OULD BE CONSIDERED<br>THE FIELD PRIOR TO ANY         |      | DATE OF<br>PRINT:                  | _, _,                     |                  |
|          | c                  | . <u> </u>                         | EXCAVATION OR CONS                                               | TRUCTION IN THE VICIN                                                | ITY.                                                                         |      | E                                  | X-01                      |                  |
|          |                    |                                    | Fig                                                              | ure 1.2 - Ex                                                         | kisting Conditions (1 of                                                     | f 2) | <b>2</b> or                        | - <b>8</b> SHE            | ETS              |







|            | MAP LEGEND                                    |           |                             | MAP INFORMATION                                                                                                                                                                                 |  |  |
|------------|-----------------------------------------------|-----------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Area of In | <b>terest (AOI)</b><br>Area of Interest (AOI) | 8         | Spoil Area<br>Stony Spot    | The soil surveys that comprise your AOI were mapped at 1:24,000.                                                                                                                                |  |  |
| Soils      | Soil Map Unit Polygons                        | 0         | Very Stony Spot<br>Wet Spot | Warning: Soil Map may not be valid at this scale.                                                                                                                                               |  |  |
| ĩ          | Soil Map Unit Lines<br>Soil Map Unit Points   | ∆         | Other                       | Enlargement of maps beyond the scale of mapping can cause<br>misunderstanding of the detail of mapping and accuracy of soil<br>line placement. The maps do not show the small areas of          |  |  |
| Special    | Point Features<br>Blowout                     | Water Fea | Special Line Features       | contrasting soils that could have been shown at a more detailed scale.                                                                                                                          |  |  |
| ×          | Borrow Pit<br>Clay Spot                       | Transport | ation                       | Please rely on the bar scale on each map sheet for map                                                                                                                                          |  |  |
| õ          | Closed Depression                             | ~         | Rans<br>Interstate Highways | Source of Map: Natural Resources Conservation Service                                                                                                                                           |  |  |
| 672<br>**  | Gravelly Spot                                 | ~         | US Routes<br>Major Roads    | Web Soil Survey URL:<br>Coordinate System: Web Mercator (EPSG:3857)                                                                                                                             |  |  |
| Ø<br>A     | Landfill<br>Lava Flow                         | Backgrou  | Local Roads<br>nd           | Maps from the Web Soil Survey are based on the Web Mercator<br>projection, which preserves direction and shape but distorts<br>distance and area. A projection that preserves area, such as the |  |  |
| 业<br>交     | Marsh or swamp<br>Mine or Quarry              | No.       | Aerial Photography          | Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.                                                                              |  |  |
| 0          | Miscellaneous Water<br>Perennial Water        |           |                             | This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.                                                                                             |  |  |
| ~          | Rock Outcrop                                  |           |                             | Soil Survey Area: Thurston County Area, Washington                                                                                                                                              |  |  |
| +<br>      | Sandy Spot                                    |           |                             | Soil map units are labeled (as space allows) for map scales                                                                                                                                     |  |  |
| ⇔<br>◊     | Severely Eroded Spot<br>Sinkhole              |           |                             | 1:50,000 or larger.<br>Date(s) aerial images were photographed: Jul 31, 2022—Aug 8,                                                                                                             |  |  |
| \$<br>61   | Slide or Slip<br>Sodic Spot                   |           |                             |                                                                                                                                                                                                 |  |  |
| <i>من</i>  | ·                                             |           |                             | compiled and digitized probably differs from the background<br>imagery displayed on these maps. As a result, some minor<br>shifting of map unit boundaries may be evident.                      |  |  |

### **Map Unit Legend**

| Map Unit Symbol             | Map Unit Name                                 | Acres in AOI | Percent of AOI |
|-----------------------------|-----------------------------------------------|--------------|----------------|
| 39                          | Giles silt loam, 3 to 15 percent slopes       | 4.0          | 24.3%          |
| 43                          | Hoogdal silt loam, 15 to 30 percent slopes    | 1.7          | 10.4%          |
| 48                          | Indianola loamy sand, 15 to 30 percent slopes | 2.1          | 13.1%          |
| 108                         | Skipopa silt loam, 3 to 15 percent slopes     | 8.5          | 52.2%          |
| Totals for Area of Interest |                                               | 16.3         | 100.0%         |

### Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.



Figure 2.1. Flow Chart for Determining Requirements for New Development.

concerning minimum flows needed to maintain beneficial uses, watersheds must retain the majority of their natural vegetation cover and soils, and developments must minimize their disruption of the natural hydrologic cycle in order to avoid significant natural resource degradation in lowland streams.



Figure 2.3. Flow Chart for Determining Core Requirement #5 Requirements.

### 2. EXISTING CONDITIONS DESCRIPTION

Approximately 60% of the existing project site is currently undeveloped and forested. The remaining approximate 40% has been cleared with a portion of it developed as a single-family residence. Stormwater runoff does not appear to enter the site from the adjacent properties or from 15<sup>th</sup> Avenue NE located along the property border to the south. Stormwater from the site appears to generally infiltrate onsite and any generated runoff that does not infiltrate would discharge at the northern end of the property into one of two locations where wetland extends into the property.

The geotechnical reports indicate that the soils onsite in the vicinity of proposed development are suitable for infiltration as it consists of glacial outwash material.

Refer to the figures of the previous section of this report for more information regarding the existing features of the site and the geotechnical reports in Appendix B for more information.

According to NRCS's Web Soil Survey, the onsite soils are Giles Silt Loam with 3 to 15 percent slopes, Hoogdal Silt Loam with 15 to 30 percent slopes, Indianola Loamy Sand with 15 to 50 percent slopes and Skipopa Silt Loam with 3 to 15 percent slopes. Refer to Figure 1.4 for the Web Soil Survey.

According to pre-application notes for the project, the site is located within the Palm Street Basin, which may contain elevated concentrations of fecal coliform bacteria and dissolved oxygen.

### **Qualitative Analysis**

A qualitative analysis of the downstream reach from the project site to the receiving water and upstream of the site is required to characterize any potential offsite flow to the site or downstream backwatering effects. A downstream analysis of the project for a minimum of one-half of a mile is required as part of the qualitative analysis. The project site has a single threshold discharge area (TDA). In existing condition, flows from the site are believed to disperse and infiltrate as runoff drains north across the property. Any runoff that is not infiltrated would discharge at the northern property limit into the adjacent parcel to the north. Portions of non-infiltrated site runoff would enter the northern parcel via a wetland that extends into the property from the northern parcel. Any remaining site runoff would enter the northern parcel. After site flows have discharged into the northern parcel, they are conveyed north through wetland and forested surface coverage before eventually draining into Woodland Creek, located approximately 3,320 feet downstream (refer to Figure 3.1 for map illustrating the downstream flowpath).

A qualitative analysis of potential run-on to the project site from upstream areas was conducted to determine if any backwater effects would be caused by the project. Based upon review of available information, no appreciable amount of run-on was found to enter the project area. A roadside ditch that is located along the north side of 15<sup>th</sup> Avenue NE intercepts any potential run-on from the south. The adjacent property to the west drains north for approximately 900 feet and then drains northeast for approximately 95 feet where it enters the subject property downstream of proposed site improvements. Parcel #11809310500 is located along the southwest corner of the subject property and based on topographic information, drains to the southeast away from the subject property and toward the roadside ditch along 15<sup>th</sup> Avenue NE. Woodland Creek Subdivision is located along the western border of the subject property and based on topographic information, drains to the east and north away from the subject property. Surface flows from the west side of Woodland Creek Subdivision eventually drain into the existing conveyance system located along Woodland Creek Street NE which ultimately discharges these flows into Woodland Creek located along the subdivision's eastern limit.

Within the downstream reach of the project site, Woodland Creek has been identified as a 303(d) listed impaired water body. The creek is identified as being impaired due to Temperature, Dissolved Oxygen, PH, and Bacteria - Fecal Coliform.

There were no apparent drainage or conveyance issues identified within the halfmile downstream corridor.



Figure 3.1 - Downstream Flowpath Map

### 4. FLOW CONTROL AND WATER QUALITY FACILITY SIZING

Figure 2.3 Flow Chart for Determining Core Requirement #5 Requirements, of the SWM was followed to determine to what extent and what onsite BMPs are required. The project triggers Core Requirements #1 - 9. Projects that satisfy these criteria shall either utilize on-site stormwater management BMPs from List #2 or demonstrate compliance with the LID Performance Standards.

The project proponent has chosen to follow List #2, which requires that, for each type of surface, the BMPs shall be considered in the order listed for that type of surface and the first feasible BMP shall be implemented.

#### Lawn and Landscape areas:

1. Post-Construction Soil Quality and Depth in accordance with BMP T5.13: Post Construction Soil Quality and Depth.

All disturbed areas which will not receive hard surfacing in the postdeveloped condition shall utilize amended soils.

#### Roofs:

1. Full Dispersion in accordance with BMP T5.30: Full Dispersion, or Downspout Full Infiltration Systems in accordance with BMP T5.10A: Downspout Full Infiltration.

Dispersion BMPs shall be placed no closer than 50 feet from top of slopes steeper than 15 percent and greater than 10 feet high. The slope of the flow path must be no steeper than 15 percent for any 20-foot reach of the flow path. Slopes up to 20 percent are allowed where flow spreaders are located upstream of the dispersion area and at sites where vegetation can be established. Ground slopes in the downstream vicinity of the project are in excess of 20 percent. Therefore, full Dispersion is deemed infeasible.

 Full Infiltration is deemed feasible for the project based on the findings within the Geotechnical Engineering Report and the Infiltration Evaluation (Appendix B). An infiltration pond is proposed to infiltrate all runoff from new rooftop surface areas.

### Other Hard Surfaces:

1. Full dispersion in accordance with BMP T5.30: Full Dispersion

Because ground slopes in the downstream vicinity of the project are in excess of 20 percent, full Dispersion is deemed not feasible.

2. Permeable pavement in accordance with BMP T5.15: Permeable Pavements

Per the geotechnical reports, infiltration has been deemed feasible for stormwater management of other hard surfaces. In lieu of implementing permeable pavement, runoff from other hard surfaces will be routed to an infiltration pond for full infiltration. Prior to infiltration, these surfaces areas will receive water quality treatment.

### Part A - Predeveloped Site Hydrology

The existing 18.7 acres site is predominantly trees, shrubs, and grass vegetation. The onsite soil types are mapped as Giles Silt Loam (Type B soils), Hoogdal Silt Loam (Type D soils), Indianola Loamy Sand (Type A soils), and Skipopa Silt Loam (Type D soils). Type A and B soils are conducive to infiltration. Since Indianola Loamy Sand (Type A soils) are located at the downstream end of the site, runoff from the site is anticipated to infiltrate. Stormwater runoff will continue to infiltrate in developed condition.

Refer to Table 4.1 below for the predeveloped hydrology model Land Use basin input.

| Drainage Basin   | Roads<br>Flat (ac) | A B, Lawn,<br>Flat (ac) | A B, Forest,<br>Mod (ac) | Total<br>(ac) |
|------------------|--------------------|-------------------------|--------------------------|---------------|
| Basin 1 (onsite) | 0                  | 0                       | 10.0                     | 10.0          |
| Bypass (offsite) | 0.153              | 0.386                   | 0                        | 0.539         |

Table 4.1: Hydrology Model - Predeveloped Land Cover Types

### Part B - Developed Site Hydrology

The project chooses to use the List Approach in lieu of meeting the LID Performance Standard. According to Figure 2.3 of the SWM, the project would therefore need to select from the BMPs shown in List #2 based on feasibility and implement BMP T5.13 for Post-Construction Soil Quality and Depth.

There is insufficient onsite vegetated flowpath area with slopes of 15% or less to which target impervious surfaces may be dispersed. Therefore, full Dispersion is not feasible. Full Infiltration is feasible and will be implanted for stormwater management of all runoff from the project surface areas (roofs, road, parking, and landscaped areas). Runoff from new onsite project areas will be collected in catch basins and conveyed in pipes to an infiltration pond for full infiltration.

Table 4.2 below includes a summary of proposed development areas used in the hydrology model for sizing.

| Drainage Basin   | Roads<br>Flat (ac) | Roof Tops<br>Flat (ac) | Sidewalks<br>Flat (ac) | A B, Lawn,<br>Flat (ac) | A B, Lawn,<br>Mod (ac) | Total<br>(ac) |
|------------------|--------------------|------------------------|------------------------|-------------------------|------------------------|---------------|
| Basin 1 (onsite) | 3.630              | 1.950                  | 0                      | 2.770                   | 1.650                  | 5.580         |
| Bypass (offsite) | 0.399              | 0                      | 0.075                  | 0.065                   | 0                      | 0.539         |

 Table 4.2: Hydrology Model - Developed Land Cover Types

### Part C - Performance Standards

The 2012 Western Washington Hydrology Model (WWHM) is an approved hydrology model to size detention, infiltration, and water quality treatment facilities.

The Standard Flow Control Requirement of the SWM is as follows:

Stormwater discharges shall match developed discharge durations to predeveloped durations for the range of pre-developed discharge rates from 50%

of the 2-year peak flow up to the full 50-year peak flow. The pre-developed condition to be matched shall be a forested land cover.

Conveyance facilities for this site are designed to convey the 25-year, 24-hour peak flow rate and contain the 100-year storm event within the catch basins.

### Part D - Flow Control System

Since the project (including bypass flow) does not result in 0.15 cfs or greater increase in the 100-year flow frequency, as estimated using an approved continuous simulation model and 15-minute time steps, the project is exempt from core requirement #7 (flow control).

### **Infiltration**

Site runoff will be routed to an infiltration pond located in the northern region of the site. Based on the geotechnical reports included in Appendix B, the factored, long-term infiltration rate to be used for sizing the proposed infiltration facility is 4 inches per hour. The bottom of the infiltration pond will be lined with a designed soils treatment layer with an infiltration rate of 3 inches per hour. The proposed infiltration facility by running simulations with the Western Washington Hydrology Model (WWHM) to infiltrate 100 percent of the onsite runoff volume generated by the WWHM runoff series.

The WWHM calculations are contained in Appendix A, the proposed basins are shown in Figure 4.2 and a summary of the infiltration pond volumes are shown in Table 4.3.

|                   | Modeled | Provided |
|-------------------|---------|----------|
| Infiltration Pond | 80,151  | 98,321   |

Table 4.3 - Volumes (Cu Ft)

### Bypass Flow

On some sites, topography can make it difficult or costly to collect all target surface runoff for conveyance to the onsite flow control facility. Compensatory mitigation by the flow control facility must be provided so that the net effect at the point of convergence downstream is the same with or without the bypass. This mitigation may be waived if the existing site conditions 100-year peak discharge from the area of the bypassed target surfaces is increased by no more than 0.15 cfs and flow control BMPs are applied to the impervious surfaces. To compensate for bypass target surface areas, the bypass areas have been included in sizing model for the proposed infiltration facility (POC #1). The 100-year peak discharge from the bypass area was also analyzed to ensure that it does not exceed 0.40 cfs (POC #2).

### Part E - Water Quality System

This project proposes to create more than 5,000 square feet of Pollution Generating Hard Surface (PGHS); therefore, stormwater treatment is required. Additionally, Enhanced Water Quality Treatment is required for this project site because the proposed development is Multifamily use. Phosphorous control is also required since the infiltration facility is located within one-quarter mile of a fresh water body (wetland).

Water Quality Treatment will be provided within the infiltration pond with the addition of a layer of Bioretention Soil Mix and coarse compost along the bottom of the pond. BSM is the treatment medium that has pollutant removal mechanisms such as filtration, adsorption, and biological action. A Contech StormFilter with Phosphosorb media will be provided upstream of the pond for removal of phosphorous prior to infiltration.

The following calculation determines the appropriate facility size given its tributary basin and the WQ offline flow provided from WWHM.

| WQ offline Flow:                                | 287.57 gpm (0.6407 cfs)                        |
|-------------------------------------------------|------------------------------------------------|
| Loading Rate:                                   | 18.79 gpm/cartridge                            |
| Min. # Cartridges:                              | 16                                             |
| Proposed StormFilter:<br>Phosphosorb Cartridges | Conc. Catch Basin StormFilter with sixteen 27" |

A Contech Vault StormFilter Cartridge System with sixteen 27" cartridges are proposed in northern region of the site to treat runoff from onsite project areas.

### 5. AESTHETIC CONSIDERATIONS FOR FACILITIES

The stormwater facility for this project, an open infiltration pond, will be vegetated to blend in with surrounding vegetation. The retention system will also be located in a area surrounded by forest coverage within the northern part of the site and away from proposed buildings, parking areas or adjacent properties. Black vinyl perimeter fencing will be provided for the pond as well. The proposed water quality treatment facility will be located below ground level and will therefore not require any additional aesthetic considerations.

Conveyance facilities for this site are designed to convey the 25-year, 24-hour peak flow rate and contain the 100-year storm event within the catch basins. A full conveyance and backwater analysis of the proposed stormwater conveyance system will be included with the final version of this report.

All applicable covenants, dedications, and easements will be included with the final version of this report.

### 8. AGREEMENTS AND GUARANTEES

Performance bonding or other appropriate financial instruments shall be provided as determined necessary by the City of Lacey during final design.
#### 9. OTHER PERMITS OR CONDITIONS PLACED ON THE PROJECT

Other permits for this project are listed below.

#### City of Lacey

- Land Clearing Application
- Building Permit

#### Department of Ecology

• NPDES

# Appendix A

#### APPENDIX A - HYDROLOGY MODEL ANALYSIS AND RESULTS

The project was modeled using WWHM 2012, an approved hydrology model.

# <section-header>

# **General Model Information**

| Project Name: | WilliamsCrossing 12-18-2023 |
|---------------|-----------------------------|
| Site Name:    | Williams Crossing           |
| Site Address: |                             |
| City:         | Lacey                       |
| Report Date:  | 12/18/2023                  |
| Gage:         | Woodard Creek               |
| Data Start:   | 1955/10/01                  |
| Data End:     | 2011/09/30                  |
| Timestep:     | 15 Minute                   |
| Precip Scale: | 1.000                       |
| Version Date: | 2021/08/18                  |
| Version:      | 4.2.18                      |

## **POC Thresholds**

| Low Flow Threshold for POC1:  | 50 Percent of the 2 Year |
|-------------------------------|--------------------------|
| High Flow Threshold for POC1: | 50 Year                  |
| Low Flow Threshold for POC2:  | 50 Percent of the 2 Year |
| High Flow Threshold for POC2: | 50 Year                  |

# Landuse Basin Data Predeveloped Land Use

| Pre-Dev Basin 1                       |            |
|---------------------------------------|------------|
| Bypass:                               | No         |
| GroundWater:                          | No         |
| Pervious Land Use<br>A B, Forest, Mod | acre<br>10 |
| Pervious Total                        | 10         |
| Impervious Land Use                   | acre       |
| Impervious Total                      | 0          |
| Basin Total                           | 10         |
| Element Flows To:<br>Surface          | Interflow  |

| Pre-Dev Bypass<br>Bypass:            | No            |
|--------------------------------------|---------------|
| GroundWater:                         | No            |
| Pervious Land Use<br>A B, Lawn, Flat | acre<br>0.386 |
| Pervious Total                       | 0.386         |
| Impervious Land Use<br>ROADS FLAT    | acre<br>0.153 |
| Impervious Total                     | 0.153         |
| Basin Total                          | 0.539         |
| Element Flows To:<br>Surface         | Interflow     |

| Pre-Dev Bypass Fl<br>Bypass:         | owrates<br>No |
|--------------------------------------|---------------|
| GroundWater:                         | No            |
| Pervious Land Use<br>A B, Lawn, Flat | acre<br>0.386 |
| Pervious Total                       | 0.386         |
| Impervious Land Use<br>ROADS FLAT    | acre<br>0.153 |
| Impervious Total                     | 0.153         |
| Basin Total                          | 0.539         |
| Element Flows To:<br>Surface         | Interflow     |

# Mitigated Land Use

| Dev Basin 1<br>Bypass:                                 | No                              |             |
|--------------------------------------------------------|---------------------------------|-------------|
| GroundWater:                                           | No                              |             |
| Pervious Land Use<br>A B, Lawn, Flat<br>A B, Lawn, Mod | acre<br>2.77<br>1.65            |             |
| Pervious Total                                         | 4.42                            |             |
| Impervious Land Use<br>ROADS FLAT<br>ROOF TOPS FLAT    | acre<br>3.63<br>1.95            |             |
| Impervious Total                                       | 5.58                            |             |
| Basin Total                                            | 10                              |             |
| Element Flows To:<br>Surface<br>Trapezoidal Pond 1     | Interflow<br>Trapezoidal Pond 1 | Groundwater |

| Dev Bypass<br>Bypass:                               | Yes                    |
|-----------------------------------------------------|------------------------|
| GroundWater:                                        | No                     |
| Pervious Land Use<br>A B, Lawn, Flat                | acre<br>0.065          |
| Pervious Total                                      | 0.065                  |
| Impervious Land Use<br>ROADS FLAT<br>SIDEWALKS FLAT | acre<br>0.399<br>0.075 |
| Impervious Total                                    | 0.474                  |
| Basin Total                                         | 0.539                  |
| Element Flows To:<br>Surface                        | Interflow              |

### -Dev Bypass Flowrates

| Bypass:                                             | No                     |
|-----------------------------------------------------|------------------------|
| GroundWater:                                        | No                     |
| Pervious Land Use<br>A B, Lawn, Flat                | acre<br>0.065          |
| Pervious Total                                      | 0.065                  |
| Impervious Land Use<br>ROADS FLAT<br>SIDEWALKS FLAT | acre<br>0.399<br>0.075 |
| Impervious Total                                    | 0.474                  |
| Basin Total                                         | 0.539                  |
|                                                     |                        |

Element Flows To: Surface Inte

Interflow

Routing Elements Predeveloped Routing

# Mitigated Routing

## Trapezoidal Pond 1

| 167.00 ft.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80.00 ft.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6 ft.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.0000 acre-feet.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| r: 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dn                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| d (ac-ft.):        | 1147.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Riser (ac-ft.):    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Facility (ac-ft.): | 1147.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| o Facility:        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ity:               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 To 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0 ft.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0 in.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Outlet 2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    | 167.00 ft.<br>80.00 ft.<br>6 ft.<br>0.0000 acre-feet.<br>3<br>r: 1<br>on<br>d (ac-ft.):<br>Facility (ac-ft.):<br>Facility (ac-ft.):<br>0 Facility:<br>ity:<br>0 To 1<br>0 To 1 |

### Pond Hydraulic Table

| 110.000.3060.0000.0000.000110.070.3060.0200.0000.927110.130.3060.0400.0000.927110.200.3060.0610.0000.927                                                                                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 110.07         0.306         0.020         0.000         0.927           110.13         0.306         0.040         0.000         0.927           110.20         0.306         0.061         0.000         0.927 |  |
| 110.13         0.306         0.040         0.000         0.927           110.20         0.306         0.061         0.000         0.927                                                                          |  |
| 110 20 0 306 0 061 0 000 0 927                                                                                                                                                                                   |  |
| 0.001 0.000 0.021                                                                                                                                                                                                |  |
| 110.27 0.306 0.081 0.000 0.927                                                                                                                                                                                   |  |
| 110.33 0.306 0.102 0.000 0.927                                                                                                                                                                                   |  |
| 110.40 0.306 0.122 0.000 0.927                                                                                                                                                                                   |  |
| 110.47 0.306 0.143 0.000 0.927                                                                                                                                                                                   |  |
| 110.53 0.306 0.163 0.000 0.927                                                                                                                                                                                   |  |
| 110.60 0.306 0.184 0.000 0.927                                                                                                                                                                                   |  |
| 110.67 0.306 0.204 0.000 0.927                                                                                                                                                                                   |  |
| 110.73 0.306 0.224 0.000 0.927                                                                                                                                                                                   |  |
| 110.80 0.306 0.245 0.000 0.927                                                                                                                                                                                   |  |
| 110.87 0.306 0.265 0.000 0.927                                                                                                                                                                                   |  |
| 110.93 0.306 0.286 0.000 0.927                                                                                                                                                                                   |  |
| 111.00 0.306 0.306 0.000 0.927                                                                                                                                                                                   |  |
| 111.07 0.306 0.327 0.000 0.927                                                                                                                                                                                   |  |
| 111.13 0.306 0.347 0.000 0.927                                                                                                                                                                                   |  |
| 111.20 0.306 0.368 0.000 0.927                                                                                                                                                                                   |  |
| 111.27 0.306 0.388 0.000 0.927                                                                                                                                                                                   |  |
| 111.33 0.306 0.408 0.000 0.927                                                                                                                                                                                   |  |
| 111.40 0.306 0.429 0.000 0.927                                                                                                                                                                                   |  |
| 111.47 0.306 0.449 0.000 0.927                                                                                                                                                                                   |  |
| 111.53 0.306 0.470 0.000 0.927                                                                                                                                                                                   |  |
| 111.60 0.306 0.490 0.000 0.927                                                                                                                                                                                   |  |
| 111.67 0.306 0.511 0.000 0.927                                                                                                                                                                                   |  |

| 111.73<br>111.80<br>111.87<br>111.93<br>112.00<br>112.07<br>112.13<br>112.20<br>112.27<br>112.33<br>112.40<br>112.47<br>112.53<br>112.60<br>112.67<br>112.73<br>112.80<br>112.67<br>112.73<br>112.80<br>113.07<br>113.13<br>113.20<br>113.27<br>113.33<br>113.40<br>113.47<br>113.53<br>113.60<br>113.67<br>113.73<br>113.80<br>113.67<br>113.73<br>113.80<br>113.87<br>113.93<br>114.00<br>114.27<br>114.33<br>114.00<br>114.27<br>114.33<br>114.00<br>114.27<br>114.33<br>114.40<br>114.47<br>114.53<br>114.60<br>114.67<br>114.73<br>114.80<br>114.87 | 0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0 | 0.531<br>0.552<br>0.572<br>0.593<br>0.613<br>0.633<br>0.654<br>0.674<br>0.695<br>0.715<br>0.736<br>0.756<br>0.777<br>0.817<br>0.838<br>0.858<br>0.879<br>0.920<br>0.940<br>0.940<br>0.961<br>0.981<br>1.001<br>1.022<br>1.042<br>1.042<br>1.042<br>1.042<br>1.042<br>1.063<br>1.104<br>1.124<br>1.145<br>1.267<br>1.288<br>1.308<br>1.329<br>1.349<br>1.349<br>1.349<br>1.349<br>1.349<br>1.341<br>1.451<br>1.472<br>1.492<br>1.513 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0 | 0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 114.60<br>114.67<br>114.73<br>114.80<br>114.87<br>114.93<br>115.00<br>115.07<br>115.13<br>115.20<br>115.27<br>115.33<br>115.40<br>115.47<br>115.53                                                                                                                                                                                                                                                                                                                                                                                                       | 0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306<br>0.306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.410<br>1.431<br>1.451<br>1.472<br>1.513<br>1.533<br>1.554<br>1.574<br>1.594<br>1.615<br>1.635<br>1.656<br>1.676<br>1.697                                                                                                                                                                                                                                                                                                          | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927<br>0.927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| 115.60 | 0.306 | 1.717              | 0.000 | 0.927 |
|--------|-------|--------------------|-------|-------|
| 115.67 | 0.306 | 1.738              | 0.000 | 0.927 |
| 115.73 | 0.306 | 1.758              | 0.000 | 0.927 |
| 115.80 | 0.306 | 1.778              | 0.000 | 0.927 |
| 115.87 | 0.306 | 1.799              | 0.000 | 0.927 |
| 115.93 | 0.306 | <u>1.819</u>       | 0.000 | 0.927 |
| 116.00 | 0.306 | <mark>1.840</mark> | 0.000 | 0.927 |
| 116.07 | 0.306 | 1.860              | 0.000 | 0.927 |

# Analysis Results



+ Predeveloped x Mi



| Predeveloped Landuse   | Totals for POC #1 |
|------------------------|-------------------|
| Total Pervious Area:   | 10.386            |
| Total Impervious Area: | 0.153             |

Mitigated Landuse Totals for POC #1 Total Pervious Area: 4.485 Total Impervious Area: 6.054

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #1

| Flow(cfs)       |
|-----------------|
| 0.118795        |
| 0.255583        |
| 0.407956        |
| 0.708347        |
| 1.042443        |
| <b>1.506223</b> |
|                 |

Flow Frequency Return Periods for Mitigated. POC #1

| Return Period | Flow(cfs) |                                                   |
|---------------|-----------|---------------------------------------------------|
| 2 year        | 0.225441  | Since the project (including bypass flow) does    |
| 5 year        | 0.309255  | not result in 0.15 cfs or greater increase in the |
| 10 year       | 0.372481  | 100-year flow frequency, as estimated using an    |
| 25 year       | 0.46167   | approved continuous simulation model and          |
| 50 year       | 0.535212  | 15-minute time steps, the project is event from   |
| 100 year      | 0.615143  | acro requirement #7 (flow control)                |
|               |           | COLE LEQUILEMENT #7 (IIOM CONTLOD).               |

#### **Annual Peaks**

Annual Peaks for Predeveloped and Mitigated. POC #1

| Predeveloped | Mitigated                                                                                              |
|--------------|--------------------------------------------------------------------------------------------------------|
| 0.253        | 0.200                                                                                                  |
| 0.201        | 0.322                                                                                                  |
| 0.087        | 0.168                                                                                                  |
| 0.079        | 0.219                                                                                                  |
| 0.151        | 0.391                                                                                                  |
| 0.562        | 0.155                                                                                                  |
| 0.060        | 0.170                                                                                                  |
| 0.413        | 0.372                                                                                                  |
| 0.472        | 0.249                                                                                                  |
| 0.245        | 0.203                                                                                                  |
|              | Predeveloped<br>0.253<br>0.201<br>0.087<br>0.079<br>0.151<br>0.562<br>0.060<br>0.413<br>0.472<br>0.245 |

| 1966<br>1967<br>1968<br>1969<br>1970<br>1971<br>1972<br>1973<br>1974<br>1975<br>1976<br>1977<br>1978<br>1979<br>1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994 | 0.049<br>0.125<br>0.069<br>0.136<br>0.097<br>0.127<br>0.546<br>0.069<br>0.114<br>0.072<br>0.089<br>0.095<br>0.165<br>0.094<br>0.133<br>0.279<br>0.135<br>0.133<br>0.279<br>0.135<br>0.133<br>0.092<br>0.065<br>0.125<br>0.524<br>0.060<br>0.092<br>0.146<br>0.517<br>4.598<br>0.114<br>0.066<br>0.141<br>0.066<br>0.141<br>0.265 | 0.144<br>0.177<br>0.152<br>0.267<br>0.156<br>0.171<br>0.243<br>0.267<br>0.200<br>0.197<br>0.292<br>0.267<br>0.290<br>0.232<br>0.277<br>0.237<br>0.410<br>0.188<br>0.197<br>0.237<br>0.410<br>0.188<br>0.277<br>0.410<br>0.167<br>0.278<br>0.303<br>0.307<br>0.756<br>0.200<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.236<br>0.256<br>0.236<br>0.236<br>0.236<br>0.256<br>0.236<br>0.236<br>0.256<br>0.236<br>0.236<br>0.256<br>0.236<br>0.236<br>0.256<br>0.236<br>0.236<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0.256<br>0 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1993                                                                                                                                                                                                                                                 | 0.114                                                                                                                                                                                                                                                                                                                            | 0.175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1994                                                                                                                                                                                                                                                 | 0.066                                                                                                                                                                                                                                                                                                                            | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1995                                                                                                                                                                                                                                                 | 0.141                                                                                                                                                                                                                                                                                                                            | 0.236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1996                                                                                                                                                                                                                                                 | 0.265                                                                                                                                                                                                                                                                                                                            | 0.354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1997                                                                                                                                                                                                                                                 | 0.501                                                                                                                                                                                                                                                                                                                            | 0.543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1998                                                                                                                                                                                                                                                 | 0.133                                                                                                                                                                                                                                                                                                                            | 0.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1999                                                                                                                                                                                                                                                 | 0.066                                                                                                                                                                                                                                                                                                                            | 0.202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2000                                                                                                                                                                                                                                                 | 0.060                                                                                                                                                                                                                                                                                                                            | 0.184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2001                                                                                                                                                                                                                                                 | 0.052                                                                                                                                                                                                                                                                                                                            | 0.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2002                                                                                                                                                                                                                                                 | 0.060                                                                                                                                                                                                                                                                                                                            | 0.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2003                                                                                                                                                                                                                                                 | 0.064                                                                                                                                                                                                                                                                                                                            | 0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2004                                                                                                                                                                                                                                                 | 0.062                                                                                                                                                                                                                                                                                                                            | 0.183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2005                                                                                                                                                                                                                                                 | 0.058                                                                                                                                                                                                                                                                                                                            | 0.156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2006                                                                                                                                                                                                                                                 | 0.070                                                                                                                                                                                                                                                                                                                            | 0.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2007                                                                                                                                                                                                                                                 | 0.138                                                                                                                                                                                                                                                                                                                            | 0.420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2008                                                                                                                                                                                                                                                 | 0.101                                                                                                                                                                                                                                                                                                                            | 0.240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2009                                                                                                                                                                                                                                                 | 0.173                                                                                                                                                                                                                                                                                                                            | 0.228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2010                                                                                                                                                                                                                                                 | 0.141                                                                                                                                                                                                                                                                                                                            | 0.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2011                                                                                                                                                                                                                                                 | 0.050                                                                                                                                                                                                                                                                                                                            | 0.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### **Ranked Annual Peaks**

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated 4.5981 0.7556 1 0.5431 2345678 0.5618 0.5464 0.4200 0.5244 0.4098 0.5173 0.4021 0.3906 0.5009 0.4723 0.3723 0.4130 0.3541

| 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>20 | 0.2788<br>0.2652<br>0.2533<br>0.2453<br>0.2008<br>0.1733<br>0.1655<br>0.1509<br>0.1462<br>0.1415<br>0.1408<br>0.1380<br>0.1359<br>0.1352<br>0.1352<br>0.1329<br>0.1329<br>0.1326<br>0.1272<br>0.1254<br>0.1251 | $\begin{array}{c} 0.3376\\ 0.3217\\ 0.3070\\ 0.3031\\ 0.2916\\ 0.2895\\ 0.2780\\ 0.2771\\ 0.2769\\ 0.2674\\ 0.2674\\ 0.2667\\ 0.2492\\ 0.2492\\ 0.2492\\ 0.2404\\ 0.2370\\ 0.2362\\ 0.2316\\ 0.2278\\ 0.2193\\ 0.2193\\ 0.2022\end{array}$ |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30                                                                                                                        | 0.1135                                                                                                                                                                                                         | 0.2029                                                                                                                                                                                                                                     |
| 31                                                                                                                        | 0.1013                                                                                                                                                                                                         | 0.2020                                                                                                                                                                                                                                     |
| 32                                                                                                                        | 0.0968                                                                                                                                                                                                         | 0.2002                                                                                                                                                                                                                                     |
| 33<br>34<br>35<br>36                                                                                                      | 0.0946<br>0.0937<br>0.0922                                                                                                                                                                                     | 0.2002<br>0.1997<br>0.1979<br>0.1972                                                                                                                                                                                                       |
| 30<br>37<br>38<br>39                                                                                                      | 0.0890<br>0.0865<br>0.0792                                                                                                                                                                                     | 0.1972<br>0.1970<br>0.1881<br>0.1846                                                                                                                                                                                                       |
| 40                                                                                                                        | 0.0725                                                                                                                                                                                                         | 0.1841                                                                                                                                                                                                                                     |
| 41                                                                                                                        | 0.0698                                                                                                                                                                                                         | 0.1827                                                                                                                                                                                                                                     |
| 42                                                                                                                        | 0.0688                                                                                                                                                                                                         | 0.1796                                                                                                                                                                                                                                     |
| 43                                                                                                                        | 0.0687                                                                                                                                                                                                         | 0.1774                                                                                                                                                                                                                                     |
| 44                                                                                                                        | 0.0657                                                                                                                                                                                                         | 0.1748                                                                                                                                                                                                                                     |
| 45                                                                                                                        | 0.0657                                                                                                                                                                                                         | 0.1711                                                                                                                                                                                                                                     |
| 46                                                                                                                        | 0.0651                                                                                                                                                                                                         | 0.1697                                                                                                                                                                                                                                     |
| 47                                                                                                                        | 0.0644                                                                                                                                                                                                         | 0.1682                                                                                                                                                                                                                                     |
| 48                                                                                                                        | 0.0624                                                                                                                                                                                                         | 0.1671                                                                                                                                                                                                                                     |
| 49                                                                                                                        | 0.0604                                                                                                                                                                                                         | 0.1633                                                                                                                                                                                                                                     |
| 50                                                                                                                        | 0.0600                                                                                                                                                                                                         | 0.1577                                                                                                                                                                                                                                     |
| 51                                                                                                                        | 0.0597                                                                                                                                                                                                         | 0.1562                                                                                                                                                                                                                                     |
| 52                                                                                                                        | 0.0595                                                                                                                                                                                                         | 0.1555                                                                                                                                                                                                                                     |
| 53<br>54<br>55                                                                                                            | 0.0582<br>0.0522<br>0.0501                                                                                                                                                                                     | 0.1535<br>0.1546<br>0.1521<br>0.1516                                                                                                                                                                                                       |
| 56                                                                                                                        | 0.0487                                                                                                                                                                                                         | 0.1440                                                                                                                                                                                                                                     |

# **Duration Flows**

| Flow(cfs) | Predev                | Mit      | Percentage | Pass/Fai      | I                                |
|-----------|-----------------------|----------|------------|---------------|----------------------------------|
| 0.0594    | 701                   | 11960    | 1706       | Fail          |                                  |
| 0.0693    | 442                   | 8129     | 1839       | Fail          | Note: OK to Fail, since as noted |
| 0.0793    | 330                   | 5618     | 1702       | Fall          | on Page 13, the project is       |
| 0.0892    | 259                   | 3850     | 1488       | Fall          | exempt from core requirement     |
| 0.0991    | 212                   | 2739     | 1291       | Fall          | #7 (flow control)                |
| 0.1090    | 102                   | 1993     | 1095       | Fall          |                                  |
| 0.1190    | 140                   | 1502     | 1020       | Fall          |                                  |
| 0.1209    | 123                   | 1109     | 901        | Fall          |                                  |
| 0.1300    | 10 <del>4</del><br>Q1 | 681      | 7/8        | Fall          |                                  |
| 0.1587    | 85                    | 537      | 631        | Fail          |                                  |
| 0 1686    | 78                    | 403      | 516        | Fail          |                                  |
| 0.1786    | 70                    | 306      | 437        | Fail          |                                  |
| 0.1885    | 65                    | 228      | 350        | Fail          |                                  |
| 0.1984    | 58                    | 168      | 289        | Fail          |                                  |
| 0.2083    | 54                    | 136      | 251        | Fail          |                                  |
| 0.2183    | 51                    | 112      | 219        | Fail          |                                  |
| 0.2282    | 44                    | 86       | 195        | Fail          |                                  |
| 0.2381    | 41                    | 73       | 178        | Fail          |                                  |
| 0.2481    | 38                    | 58       | 152        | Fail          |                                  |
| 0.2580    | 30                    | 51       | 141        | Fall          |                                  |
| 0.2079    | 33<br>33              | 41<br>37 | 124        | Fdll<br>Daee  |                                  |
| 0.2779    | 28                    | 30       | 107        | Pass          |                                  |
| 0.2070    | 28                    | 25       | 89         | Pass          |                                  |
| 0.3076    | 27                    | 20       | 74         | Pass          |                                  |
| 0.3176    | 27                    | 19       | 70         | Pass          |                                  |
| 0.3275    | 26                    | 18       | 69         | Pass          |                                  |
| 0.3374    | 26                    | 17       | 65         | Pass          |                                  |
| 0.3474    | 26                    | 13       | 50         | Pass          |                                  |
| 0.3573    | 25                    | 12       | 48         | Pass          |                                  |
| 0.3672    | 24                    | 12       | 50         | Pass          |                                  |
| 0.3771    | 24                    | 11       | 45         | Pass          |                                  |
| 0.3871    | 24                    | 10       | 41         | Pass          |                                  |
| 0.3970    | 23                    | 8        | 34<br>22   | Pass          |                                  |
| 0.4009    | 21<br>10              | 7<br>6   | 33<br>31   | Pass          |                                  |
| 0.4109    | 19                    | 5        | 26         | Pass          |                                  |
| 0 4367    | 17                    | 4        | 23         | Pass          |                                  |
| 0.4467    | 16                    | 4        | 25         | Pass          |                                  |
| 0.4566    | 16                    | 3        | 18         | Pass          |                                  |
| 0.4665    | 16                    | 3        | 18         | Pass          |                                  |
| 0.4764    | 15                    | 3        | 20         | Pass          |                                  |
| 0.4864    | 15                    | 2        | 13         | Pass          |                                  |
| 0.4963    | 15                    | 2        | 13         | Pass          |                                  |
| 0.5062    | 14                    | 2        | 14         | Pass          |                                  |
| 0.5162    | 13                    | 2        | 15         | Pass          |                                  |
| 0.5261    | 11                    | 2        | 10         | Pass          |                                  |
| 0.5300    | 11                    | ∠<br>1   | IÖ<br>O    | Pass          |                                  |
| 0.5400    | 10                    | 1        | 9<br>10    | r ass<br>Pass |                                  |
| 0.5658    | 9                     | 1        | 11         | Pass          |                                  |
| 0.5757    | 9                     | 1        | 11         | Pass          |                                  |
| 0.5857    | 9                     | 1        | 11         | Pass          |                                  |

| 0.5956 | 9 | 1      | 11 | Pass  |
|--------|---|--------|----|-------|
| 0.6055 | 9 | 1      | 11 | Pass  |
| 0.6155 | 9 | 1      | 11 | Pass  |
| 0.6254 | 9 | 1      | 11 | Pass  |
| 0.6353 | 9 | 1      | 11 | Pass  |
| 0.6453 | 9 | 1      | 11 | Pass  |
| 0.6552 | 9 | 1      | 11 | Pass  |
| 0.6651 | 9 | 1      | 11 | Pass  |
| 0.6750 | 9 | 1      | 11 | Pass  |
| 0.6850 | 8 | 1      | 12 | Pass  |
| 0.6949 | 8 | 1      | 12 | Pass  |
| 0.7048 | 7 | 1      | 14 | Pass  |
| 0 7148 | 7 | 1      | 14 | Pass  |
| 0 7247 | 7 | 1      | 14 | Pass  |
| 0 7346 | 7 | 1      | 14 | Pass  |
| 0 7446 | 7 | 1      | 14 | Pass  |
| 0 7545 | 7 | 1      | 14 | Pass  |
| 0 7644 | 7 | Ó      | 0  | Pass  |
| 0 7743 | 7 | Õ      | Ő  | Pass  |
| 0 7843 | 7 | Õ      | Ő  | Pass  |
| 0 7942 | 7 | Õ      | Ő  | Pass  |
| 0.8041 | 7 | Õ      | Ő  | Pass  |
| 0.8141 | 7 | Õ      | Ő  | Pass  |
| 0.8240 | 7 | Õ      | Ő  | Pass  |
| 0.8339 | 7 | Õ      | Õ  | Pass  |
| 0.8438 | 7 | Õ      | Õ  | Pass  |
| 0.8538 | 7 | Õ      | Õ  | Pass  |
| 0.8637 | 7 | Õ      | Õ  | Pass  |
| 0.8736 | 7 | Õ      | Õ  | Pass  |
| 0.8836 | 7 | Õ      | Õ  | Pass  |
| 0.8935 | 7 | Õ      | Õ  | Pass  |
| 0.9034 | 7 | Õ      | Õ  | Pass  |
| 0.9134 | 7 | Õ      | Õ  | Pass  |
| 0.9233 | 7 | Õ      | Õ  | Pass  |
| 0.9332 | 7 | Õ      | Õ  | Pass  |
| 0.9431 | 6 | Õ      | Õ  | Pass  |
| 0.9531 | 6 | Õ      | Õ  | Pass  |
| 0.9630 | õ | Õ      | Õ  | Pass  |
| 0.9729 | 5 | Õ      | Ő  | Pass  |
| 0.9829 | 5 | Õ      | Ő  | Pass  |
| 0.9928 | 5 | 0      | 0  | Pass  |
| 1 0027 | 5 | 0      | 0  | Pass  |
| 1 0127 | 5 | Õ      | õ  | Pass  |
| 1 0226 | 5 | Õ      | õ  | Pass  |
| 1 0325 | 5 | 0<br>0 | õ  | Paee  |
| 1 0424 | 5 | 0      | õ  | Pass  |
| 1.0724 | 5 | 0      | U  | 1 033 |

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

#### Water Quality

Water Quality BMP Flow and Volume for POC #1On-line facility volume:0.9344 acre-feetOn-line facility target flow:1.1233 cfs.Adjusted for 15 min:1.1233 cfs.Off-line facility target flow:0.6407 cfs.Adjusted for 15 min:0.6407 cfs.

Flowrate for sizing Contech StormFilter (internal bypass to allow off-line flows)

# LID Report

| LID Technique                                                | Used for<br>Treatment ? | Total Volume<br>Needs<br>Treatment<br>(ac-ft) | Volume<br>Through<br>Facility<br>(ac-ft) | Infiltration<br>Volume<br>(ac-ft) | Cumulative<br>Volume<br>Infiltration<br>Credit | Percent<br>Volume<br>Infiltrated | Water Quality | Percent<br>Water Quality<br>Treated | Comment                                    |
|--------------------------------------------------------------|-------------------------|-----------------------------------------------|------------------------------------------|-----------------------------------|------------------------------------------------|----------------------------------|---------------|-------------------------------------|--------------------------------------------|
| Trapezoidal Pond 1 POC                                       |                         | 1044.11                                       |                                          |                                   |                                                | 100.00                           |               |                                     |                                            |
| Total Volume Infiltrated                                     |                         | 1044.11                                       | 0.00                                     | 0.00                              |                                                | 100.00                           | 0.00          | 0%                                  | No Treat.<br>Credit                        |
| Compliance with LID<br>Standard 8% of 2-yr to 50% of<br>2-yr |                         |                                               |                                          |                                   |                                                |                                  |               |                                     | Duration<br>Analysis<br>Result =<br>Failed |
|                                                              |                         |                                               |                                          |                                   |                                                |                                  |               |                                     |                                            |

POC 2



Predeveloped Landuse Totals for POC #2 Total Pervious Area: 0.386 Total Impervious Area: 0.153

Mitigated Landuse Totals for POC #2 Total Pervious Area: 0.065 Total Impervious Area: 0.474

Flow Frequency Method: Log Pearson Type III 17B

Flow Frequency Return Periods for Predeveloped. POC #2

| Return Period | Flow(cts) |
|---------------|-----------|
| 2 year        | 0.090303  |
| 5 year        | 0.141999  |
| 10 year       | 0.186258  |
| 25 year       | 0.255644  |
| 50 year       | 0.318528  |
| 100 year      | 0.392305  |
|               |           |

Flow Frequency Return Periods for Mitigated. POC #2

| Return Period | Flow(cfs) |                                            |
|---------------|-----------|--------------------------------------------|
| 2 year        | 0.225441  | POC #2 demonstrates that the net           |
| 5 year        | 0.309255  | increase in flow frequency for the offsite |
| 10 year       | 0.372481  | bypass areas is 0.22 cfs, so less than     |
| 25 year       | 0.46167   | the maximum 0.40 cfs threshold for the     |
| 50 year       | 0.535212  |                                            |
| 100 year      | 0.615143  | roo-year return penod.                     |

#### **Annual Peaks**

Annual Peaks for Predeveloped and Mitigated. POC #2 Year Predeveloped Mitigated

| rear | Fredeveloped | wiitigat |
|------|--------------|----------|
| 1956 | 0.085        | 0.200    |
| 1957 | 0.181        | 0.322    |
| 1958 | 0.069        | 0.168    |
| 1959 | 0.079        | 0.219    |
| 1960 | 0.147        | 0.391    |
| 1961 | 0.092        | 0.155    |
| 1962 | 0.055        | 0.170    |
| 1963 | 0.218        | 0.372    |
| 1964 | 0.148        | 0.249    |
| 1965 | 0.104        | 0.203    |
| 1966 | 0.047        | 0.144    |
|      |              |          |

| 1967<br>1968<br>1969<br>1970<br>1971<br>1972<br>1973<br>1974<br>1975<br>1976<br>1977<br>1978<br>1979<br>1980<br>1981<br>1982                         | 0.069<br>0.062<br>0.134<br>0.065<br>0.072<br>0.162<br>0.068<br>0.091<br>0.072<br>0.079<br>0.094<br>0.131<br>0.094<br>0.130<br>0.149<br>0.083                            | 0.177<br>0.152<br>0.267<br>0.156<br>0.171<br>0.243<br>0.185<br>0.267<br>0.200<br>0.197<br>0.292<br>0.267<br>0.290<br>0.232<br>0.237                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000<br>2001 | 0.133<br>0.073<br>0.064<br>0.096<br>0.162<br>0.055<br>0.090<br>0.127<br>0.203<br>0.583<br>0.079<br>0.066<br>0.084<br>0.133<br>0.385<br>0.131<br>0.065<br>0.059<br>0.051 | 0.410<br>0.188<br>0.197<br>0.198<br>0.277<br>0.278<br>0.303<br>0.307<br>0.756<br>0.175<br>0.200<br>0.236<br>0.354<br>0.354<br>0.338<br>0.302<br>0.384<br>0.338<br>0.202<br>0.184<br>0.158 |
| 2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011                                                                         | 0.058<br>0.064<br>0.050<br>0.070<br>0.136<br>0.101<br>0.096<br>0.136<br>0.050                                                                                           | $\begin{array}{c} 0.180\\ 0.163\\ 0.183\\ 0.156\\ 0.203\\ 0.420\\ 0.240\\ 0.228\\ 0.402\\ 0.402\\ 0.152\end{array}$                                                                       |

#### **Ranked Annual Peaks**

Ranked Annual Peaks for Predeveloped and Mitigated. POC #2 Rank Predeveloped Mitigated 0.5826 0.7556 1 23456789 0.3848 0.5431 0.2184 0.4200 0.2030 0.4098 0.1805 0.4021 0.1625 0.3906 0.3723 0.1618

0.3541

0.3376

0.1491 0.1482

| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | 0.1468<br>0.1363<br>0.1356<br>0.1342<br>0.1331<br>0.1325<br>0.1310<br>0.1310<br>0.1304<br>0.1269 | 0.3217<br>0.3070<br>0.2916<br>0.2895<br>0.2780<br>0.2771<br>0.2769<br>0.2674<br>0.2674 |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27             | 0.1040<br>0.1012<br>0.0964<br>0.0961<br>0.0942<br>0.0936<br>0.0919<br>0.0909                     | 0.2492<br>0.2429<br>0.2404<br>0.2370<br>0.2362<br>0.2316<br>0.2278                     |
| 27<br>28<br>29<br>30<br>31<br>32<br>33<br>24             | 0.0909<br>0.0898<br>0.0850<br>0.0836<br>0.0834<br>0.0794<br>0.0792                               | 0.2276<br>0.2193<br>0.2032<br>0.2029<br>0.2020<br>0.2002<br>0.2002                     |
| 34                                                       | 0.0789                                                                                           | 0.1997                                                                                 |
| 35                                                       | 0.0731                                                                                           | 0.1979                                                                                 |
| 36                                                       | 0.0723                                                                                           | 0.1972                                                                                 |
| 37                                                       | 0.0720                                                                                           | 0.1970                                                                                 |
| 38                                                       | 0.0696                                                                                           | 0.1881                                                                                 |
| 39                                                       | 0.0688                                                                                           | 0.1846                                                                                 |
| 40                                                       | 0.0687                                                                                           | 0.1841                                                                                 |
| 41                                                       | 0.0683                                                                                           | 0.1827                                                                                 |
| 42                                                       | 0.0656                                                                                           | 0.1796                                                                                 |
| 43                                                       | 0.0652                                                                                           | 0.1774                                                                                 |
| 44                                                       | 0.0647                                                                                           | 0.1748                                                                                 |
| 45                                                       | 0.0643                                                                                           | 0.1711                                                                                 |
| 46                                                       | 0.0636                                                                                           | 0.1697                                                                                 |
| 47                                                       | 0.0624                                                                                           | 0.1682                                                                                 |
| 48                                                       | 0.0619                                                                                           | 0.1671                                                                                 |
| 49                                                       | 0.0594                                                                                           | 0.1633                                                                                 |
| 50                                                       | 0.0584                                                                                           | 0.1577                                                                                 |
| 51                                                       | 0.0551                                                                                           | 0.1562                                                                                 |
| 52                                                       | 0.0548                                                                                           | 0.1555                                                                                 |
| 53                                                       | 0.0509                                                                                           | 0.1546                                                                                 |
| 54                                                       | 0.0502                                                                                           | 0.1521                                                                                 |
| 55                                                       | 0.0501                                                                                           | 0.1516                                                                                 |
| 56                                                       | 0.0470                                                                                           | 0.1440                                                                                 |

# **Duration Flows**

| Flow(cfs) | Predev     | Mit                     | Percentage | Pass/F | Fail                                      |
|-----------|------------|-------------------------|------------|--------|-------------------------------------------|
| 0.0452    | 1068       | 21187                   | 1983       | Fall   | DOC #2 is supported to fail as it is used |
| 0.0479    | 909        | 10010                   | 2009       | Fall   | POC #2 is expected to fail as it is used  |
| 0.0507    | 709        | 10/20                   | 2119       | Fall   | to demonstrate that bypass areas          |
| 0.0534    | 091<br>501 | 10020                   | 2174       | Fall   | create less than a 0.40 cfs net increase  |
| 0.0502    | 591        | 13409                   | 2208       | Fall   | in flow frequency for the 100-year        |
| 0.0590    | 5Z7        | 11980                   | 2273       | Fall   | return period between pre-developed       |
| 0.0017    | 459        | 10751                   | 2342       | Fall   | and post-developed conditions             |
| 0.0043    | 242        | 900Z<br>9650            | 2407       | Fall   |                                           |
| 0.0072    | 343<br>202 | 0009                    | 2024       | Fall   |                                           |
| 0.0700    | 292        | 7041                    | 2000       | Fall   |                                           |
| 0.0725    | 204        | 6301                    | 2005       | Fail   |                                           |
| 0.0783    | 242        | 5780                    | 2040       | Fail   |                                           |
| 0.0700    | 206        | 5178                    | 2513       | Fail   |                                           |
| 0.0010    | 187        | 4693                    | 2509       | Fail   |                                           |
| 0.0000    | 175        | 4232                    | 2000       | Fail   |                                           |
| 0.0893    | 160        | 3817                    | 2385       | Fail   |                                           |
| 0.0921    | 148        | 3462                    | 2339       | Fail   |                                           |
| 0.0949    | 131        | 3099                    | 2365       | Fail   |                                           |
| 0.0976    | 123        | 2865                    | 2329       | Fail   |                                           |
| 0.1004    | 117        | 2633                    | 2250       | Fail   |                                           |
| 0.1031    | 112        | 2411                    | 2152       | Fail   |                                           |
| 0.1059    | 108        | 2189                    | 2026       | Fail   |                                           |
| 0.1087    | 104        | 2017                    | 1939       | Fail   |                                           |
| 0.1114    | 92         | 1848                    | 2008       | Fail   |                                           |
| 0.1142    | 83         | 1697                    | 2044       | Fail   |                                           |
| 0.1169    | 76         | 1558                    | 2050       | Fail   |                                           |
| 0.1197    | 74         | 1429                    | 1931       | Fail   |                                           |
| 0.1225    | 72         | 1308                    | 1816       | Fail   |                                           |
| 0.1252    | 63         | 1200                    | 1904       | Fail   |                                           |
| 0.1280    | 60         | 1115                    | 1858       | Fail   |                                           |
| 0.1308    | 58         | 1029                    | 1774       | Fail   |                                           |
| 0.1335    | 50         | 955                     | 1910       | Fail   |                                           |
| 0.1363    | 47         | 905                     | 1925       | Fail   |                                           |
| 0.1390    | 43         | 840                     | 1967       | Fall   |                                           |
| 0.1418    | 39         | 795                     | 2038       | Fall   |                                           |
| 0.1440    | 30         | /4/<br>605              | 2075       | Fall   |                                           |
| 0.1473    | 30<br>20   | 649                     | 2100       | Fall   |                                           |
| 0.1501    | 30         | 0 <del>4</del> 0<br>610 | 2022       | Fall   |                                           |
| 0.1520    | 30         | 565                     | 1883       | Fail   |                                           |
| 0.1584    | 29         | 534                     | 1841       | Fail   |                                           |
| 0.1604    | 28         | 503                     | 1796       | Fail   |                                           |
| 0.1639    | 25         | 460                     | 1840       | Fail   |                                           |
| 0 1667    | 25         | 400                     | 1656       | Fail   |                                           |
| 0 1694    | 24         | 384                     | 1600       | Fail   |                                           |
| 0 1722    | 23         | 359                     | 1560       | Fail   |                                           |
| 0.1749    | 22         | 339                     | 1540       | Fail   |                                           |
| 0.1777    | 20         | 310                     | 1550       | Fail   |                                           |
| 0.1805    | 19         | 279                     | 1468       | Fail   |                                           |
| 0.1832    | 17         | 262                     | 1541       | Fail   |                                           |
| 0.1860    | 15         | 247                     | 1646       | Fail   |                                           |
| 0.1887    | 15         | 222                     | 1480       | Fail   |                                           |
| 0.1915    | 14         | 208                     | 1485       | Fail   |                                           |

| 0.1943<br>0.1970<br>0.1998<br>0.2026<br>0.2053<br>0.2081<br>0.2108<br>0.2136<br>0.2164                     | 14<br>13<br>13<br>12<br>12<br>11<br>11<br>10        | 192<br>176<br>162<br>152<br>143<br>136<br>130<br>123<br>116          | 1371<br>1353<br>1246<br>1169<br>1191<br>1133<br>1181<br>1118<br>1160<br>1222 | Fai<br>Fai<br>Fai<br>Fai<br>Fai<br>Fai<br>Fai<br>Fai         |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|
| 0.2219<br>0.2246<br>0.2274<br>0.2302<br>0.2329<br>0.2357<br>0.2384<br>0.2412<br>0.2440<br>0.2467           | 9<br>8<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7      | 105<br>96<br>90<br>84<br>78<br>76<br>72<br>67<br>61<br>58            | 1166<br>1200<br>1125<br>1200<br>1114<br>1085<br>1028<br>957<br>871<br>828    | Fai<br>Fai<br>Fai<br>Fai<br>Fai<br>Fai<br>Fai<br>Fai         |
| 0.2495<br>0.2523<br>0.2550<br>0.2578<br>0.2605<br>0.2633<br>0.2661<br>0.2688<br>0.2716<br>0.2743<br>0.2771 | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 55<br>52<br>52<br>51<br>47<br>46<br>43<br>39<br>38<br>38<br>36<br>34 | 785<br>742<br>728<br>671<br>657<br>614<br>557<br>542<br>514<br>485           | Fai<br>Fai<br>Fai<br>Fai<br>Fai<br>Fai<br>Fai<br>Fai<br>Fai  |
| 0.2799<br>0.2826<br>0.2854<br>0.2882<br>0.2909<br>0.2937<br>0.2964<br>0.2992<br>0.3020<br>0.3047           | 77766555555                                         | 32<br>31<br>30<br>29<br>27<br>25<br>25<br>24<br>22                   | 457<br>442<br>428<br>500<br>483<br>540<br>500<br>500<br>480<br>440<br>500    | Fail<br>Fail<br>Fail<br>Fail<br>Fail<br>Fail<br>Fail<br>Fail |
| 0.3075<br>0.3102<br>0.3130<br>0.3158<br>0.3185                                                             | 4<br>4<br>4<br>4<br>4                               | 20<br>20<br>20<br>19<br>19                                           | 500<br>500<br>500<br>475<br>475                                              | Fail<br>Fail<br>Fail<br>Fail<br>Fail                         |

POC #2 is expected to fail as it is used to demonstrate that bypass areas create less than a 0.40 cfs net increase in flow frequency for the 100-year return period between pre-developed and post-developed conditions.

The development has an increase in flow durations from 1/2 Predeveloped 2 year flow to the 2 year flow or more than a 10% increase from the 2 year to the 50 year flow.

The development has an increase in flow durations for more than 50% of the flows for the range of the duration analysis.

# Water Quality

Water Quality Water Quality BMP Flow and Volume for POC #2 On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs. Off-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

# LID Report

| LID Technique                                                | Used for<br>Treatment ? | Total Volume<br>Needs<br>Treatment<br>(ac-ft) | Volume<br>Through<br>Facility<br>(ac-ft) | Infiltration<br>Volume<br>(ac-ft) | Cumulative<br>Volume<br>Infiltration<br>Credit | Percent<br>Volume<br>Infiltrated | Water Quality | Percent<br>Water Quality<br>Treated | Comment                                    |
|--------------------------------------------------------------|-------------------------|-----------------------------------------------|------------------------------------------|-----------------------------------|------------------------------------------------|----------------------------------|---------------|-------------------------------------|--------------------------------------------|
| Total Volume Infiltrated                                     |                         | 0.00                                          | 0.00                                     | 0.00                              |                                                | 0.00                             | 0.00          | 0%                                  | No Treat.<br>Credit                        |
| Compliance with LID<br>Standard 8% of 2-yr to 50% of<br>2-yr |                         |                                               |                                          |                                   |                                                |                                  |               |                                     | Duration<br>Analysis<br>Result =<br>Failed |

# Model Default Modifications

Total of 0 changes have been made.

### **PERLND Changes**

No PERLND changes have been made.

### **IMPLND Changes**

No IMPLND changes have been made.

# Appendix Predeveloped Schematic

| 帰 | Pre-De<br>Basin<br>10 00a | ev<br>1 | <b>%</b> | Pre-De<br>Bypass<br>0 54ac | ev<br>S        |  |  |
|---|---------------------------|---------|----------|----------------------------|----------------|--|--|
|   | 10.000                    |         |          |                            |                |  |  |
|   |                           |         |          | Pre-De<br>Bypass<br>Flowra | ev<br>S<br>tes |  |  |
|   |                           |         |          | 0.54ac                     |                |  |  |
|   |                           |         |          |                            |                |  |  |
|   |                           |         |          |                            |                |  |  |
|   |                           |         |          |                            |                |  |  |
|   |                           |         |          |                            |                |  |  |
|   |                           |         |          |                            |                |  |  |

# Mitigated Schematic

|    | Dev Ba         | asin 1     | -          | Dev By                     | /pass        |  |  |
|----|----------------|------------|------------|----------------------------|--------------|--|--|
| SI | 10.00a         | iC         | 7          | 0.54ac                     |              |  |  |
|    | Trapez<br>Pond | oidal<br>1 | <b>7</b> 2 | -Dev B<br>Flowra<br>0.54ac | ypass<br>tes |  |  |
|    |                |            |            |                            |              |  |  |
|    |                |            |            |                            |              |  |  |
|    |                |            |            |                            |              |  |  |
|    |                |            |            |                            |              |  |  |

#### Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation END END 3 0 START 1955 10 01 2011 09 30 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->\*\*\* \* \* \* <-ID-> WDM 26 WilliamsCrossing 12-18-2023.wdm MESSU 25 PreWilliamsCrossing 12-18-2023.MES 27 PreWilliamsCrossing 12-18-2023.L61 PreWilliamsCrossing 12-18-2023.L62 POCWilliamsCrossing 12-18-20231.dat 28 30 POCWilliamsCrossing 12-18-20232.dat 31 END FILES OPN SEQUENCE INDELT 00:15 INGRP 2 7 1 PERLND PERLND IMPLND 1 501 COPY COPY 502 1 DISPLY DISPLY 2 END INGRP END OPN SEQUENCE DISPLY DISPLY-INF01 # - #<-----Title---->\*\*\*TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND Pre-Dev Basin 1 1 2 30 9 1 MAX 2 9 2 Pre-Dev Bypass Flowrates MAX 1 31 END DISPLY-INFO1 END DISPLY COPY TIMESERIES # - # NPT NMN \*\*\* 1 1 1 501 1 1 1 1 502 END TIMESERIES END COPY GENER OPCODE # # OPCD \*\*\* END OPCODE PARM K \*\*\* # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name----->NBLKS Unit-systems Printer \*\*\* User t-series Engl Metr \*\*\* # - # \* \* \* in out A/B, Forest, Mod 1 1 0 2 27 1 1 1 1 1 1 27 7 A/B, Lawn, Flat 0 END GEN-INFO \*\*\* Section PWATER\*\*\* ACTIVITY # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC \*\*\* 2 0 0 1 0 0 0 0 0 0 0 0 0

| E                    | 7<br>ND AC                                                                                                                                                                                                                                            | CTIV                                  | /ITY                      | 0                            | 0                          | 1                       | 0                                 | 0                     | 0                                 | 0                          | 0                                 | 0                       | 0                            | 0                       | 0                       |                             |                     |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|------------------------------|----------------------------|-------------------------|-----------------------------------|-----------------------|-----------------------------------|----------------------------|-----------------------------------|-------------------------|------------------------------|-------------------------|-------------------------|-----------------------------|---------------------|
| P                    | RINT-<br><pls<br># -<br/>2<br/>7<br/>ND PF</pls<br>                                                                                                                                                                                                   | -INF<br>5 ><br>#<br>RINT              | FΟ<br>***<br>ΑΤΜ<br>Γ-ΙΝ  | ****<br>P SN<br>0<br>0<br>FO | 0<br>0<br>0                | *****<br>PWAT<br>4<br>4 | *** Pr<br>SED<br>0<br>0           | PST<br>0<br>0         | flags<br>PWG<br>0<br>0            | ****<br>PQAL<br>0<br>0     | *****<br>MSTL<br>0<br>0           | *****<br>PESI<br>C<br>C | *****<br>NITR<br>0<br>0      | *****<br>PHOS<br>0<br>0 | *****<br>TRAC<br>0<br>0 | PIVL PY<br>******<br>1<br>1 | ľR<br>***<br>9<br>9 |
| P                    | WAT-E<br><pls<br># -<br/>2<br/>7<br/>ND PV</pls<br>                                                                                                                                                                                                   | PARN<br>5 ><br>#<br>WAT-              | 41<br>PW<br>CSN           | ATER<br>O RI<br>0<br>0<br>M1 | va:<br>'OP<br>0<br>0       | riabl<br>UZFG<br>0<br>0 | e mor<br>VCS<br>0<br>0            | thly<br>VUZ<br>0<br>0 | param<br>VNN<br>0<br>0            | neter<br>VIFW<br>0<br>0    | value<br>VIRC<br>0<br>0           | e fla<br>VLE<br>C<br>C  | gs *<br>INFC<br>0<br>0       | * *<br>HWT<br>0<br>0    | * * *                   |                             |                     |
| P                    | WAT-E<br><pls<br># -<br/>2<br/>7<br/>ND PV</pls<br>                                                                                                                                                                                                   | PARN<br>5 ><br>#<br>WAT-              | 42<br>***<br>-PAR         | PW<br>FORE<br>M2             | IATE:<br>ST<br>0<br>0      | R inp                   | out in<br>LZSN<br>5<br>5          | lfo: 1<br>Il          | Part 2<br>NFILT<br>2<br>0.8       | 2                          | ,<br>LSUR<br>400<br>400           | * * *                   | SLSUR<br>0.1<br>0.05         | :                       | KVARY<br>0.3<br>0.3     | AGWI<br>0.99<br>0.99        | २८<br>२६<br>२६      |
| P                    | WAT-E<br><pls<br># -<br/>2<br/>7<br/>ND PV</pls<br>                                                                                                                                                                                                   | PARN<br>5 ><br>#<br>WAT-              | 43<br>***<br>-PAR         | PW<br>PETM<br>M3             | ATE:<br>IAX<br>0<br>0      | R inp<br>PE             | out in<br>TMIN<br>0<br>0          | lfo: I<br>II          | Part 3<br>NFEXP<br>2<br>2         | 3<br>I 1                   | NFILD<br>2<br>2                   | ***<br>D                | DEEPFR<br>0<br>0             | B                       | ASETP<br>0<br>0         | AGWE:                       | ГР<br>0<br>0        |
| P                    | WAT-E<br><pls<br># -<br/>2<br/>7<br/>ND PV</pls<br>                                                                                                                                                                                                   | PARI<br>5 ><br>#<br>VAT-              | 14<br>- PAR               | PWA<br>CEF<br>C<br>M4        | TER<br>SC<br>.2<br>.1      | inpu                    | ut inf<br>UZSN<br>0.5<br>0.5      | o: Pa                 | art 4<br>NSUR<br>0.35<br>0.25     |                            | INTFW<br>0<br>0                   |                         | IRC<br>0.7<br>0.7            | :                       | LZETP<br>0.7<br>0.25    | * * *                       |                     |
| P                    | WAT-S<br><pls<br># -<br/>2<br/>7<br/>ND PV</pls<br>                                                                                                                                                                                                   | STA:<br>5 ><br>#<br>VAT-              | re1<br>***<br>***<br>-STA | Ini<br>ran<br>CE<br>TE1      | tia<br>fro<br>PS<br>0<br>0 | l cor<br>m 199          | nditic<br>90 to<br>SURS<br>0<br>0 | ons at<br>end o       | t star<br>of 199<br>UZS<br>0<br>0 | rt of<br>92 (p             | simul<br>at 1-1<br>IFWS<br>0<br>0 | latic<br>11-95          | n<br>5) RUN<br>LZS<br>3<br>3 | 21 *                    | * *<br>AGWS<br>1<br>1   | GW                          | 7S<br>0<br>0        |
| END<br>IMP<br>G<br>E | PERI<br>LND<br>EN-IN<br><pls<br># -<br/>1<br/>ND GE<br/>** Se</pls<br>                                                                                                                                                                                | IND<br>VFO<br>5 ><br>#<br>EN-1<br>ect | <<br>ROA<br>INFO<br>LON   | <br>DS/F<br>IWAT             | Nam<br>LAT<br>ER*          | e<br>* *                | >                                 | Un:<br>User<br>1      | it-sys<br>t-se<br>in<br>1         | stems<br>eries<br>out<br>1 | Pri<br>Engl<br>27                 | inter<br>Metr<br>O      | * * * *<br>* * *<br>* * *    |                         |                         |                             |                     |
| A<br>E               | CTIVI<br><pls<br># -<br/>1<br/>ND AC</pls<br>                                                                                                                                                                                                         | UTY<br>5 ><br>#<br>CTIV               | ***<br>ATM<br>/ITY        | ****<br>P SN<br>0            | ***<br>IOW<br>0            | *** д<br>IWAT<br>1      | Active<br>SLD<br>0                | e Sect<br>IWG<br>0    | tions<br>IQAL<br>0                | ****<br>**                 | * * * * * *                       | * * * * *               | ****                         | * * * * *               | * * * * *               |                             |                     |
| P<br>E               | RINT-<br><ils<br># -<br/>1<br/>ND PF</ils<br>                                                                                                                                                                                                         | -INF<br>5 ><br>#<br>RINT              | FO<br>***<br>ATM<br>F-IN  | ****<br>P SN<br>0<br>FO      | * P:<br>IOW<br>0           | rint-<br>IWAT<br>4      | -flags<br>SLD<br>0                | ; ***<br>IWG<br>0     | ****<br>IQAL<br>0                 | PIVL<br>*<br>1             | PYR<br>* * * * * *<br>9           | * * *                   |                              |                         |                         |                             |                     |
| I                    | WAT-I<br><pls< td=""><td>PARI<br/>S &gt;</td><td>41<br/>IW.</td><td>ATEF</td><td>va</td><td>riabl</td><td>e mor</td><td>thly</td><td>param</td><td>neter</td><td>value</td><td>e fla</td><td>ıgs *</td><td>* *</td><td></td><td></td><td></td></pls<> | PARI<br>S >                           | 41<br>IW.                 | ATEF                         | va                         | riabl                   | e mor                             | thly                  | param                             | neter                      | value                             | e fla                   | ıgs *                        | * *                     |                         |                             |                     |

 
 #
 #
 CSNO
 RTOP
 VRS
 VNN
 RTLI

 1
 0
 0
 0
 0
 0
 0
 \* \* \* END IWAT-PARM1 IWAT-PARM2 
 ART-PARM2

 <PLS >
 IWATER input info: Part 2
 \*

 # - # \*\*\*
 LSUR
 SLSUR
 NSUR
 RETSC

 1
 400
 0.01
 0.1
 0.1
 \* \* \* 1 400 END IWAT-PARM2 IWAT-PARM3 IWATER input info: Part 3 \* \* \* <PLS > # - # \*\*\*PETMAX PETMIN 1 0 END IWAT-PARM3 IWAT-STATE1 <PLS > \*\*\* Initial conditions at start of simulation # - # \*\*\* RETS SURS 1 0 0 1 0 END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK \*\*\* <-factor-> <Name> # Tbl# \*\*\* <-Source-> <Name> # Pre-Dev Basin 1\*\*\* COPY 501 12 COPY 501 13 2 PERLND 10 PERLND 2 10 Pre-Dev Bypass\*\*\* 0.386 COPY 501 12 0.386 COPY 501 13 0.153 COPY 501 15 PERLND 7 PERLND 7 IMPLND 1 Pre-Dev Bypass Flowrates\*\*\* 0.386 COPY 502 12 0.386 COPY 502 13 0.153 COPY 502 15 PERLND 7 PERLND 7 1 IMPLND \*\*\*\*\*Routing\*\*\*\*\* END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> \*\*\* <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # \*\*\*
COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1
COPY 502 OUTPUT MEAN 1 1 48.4 DISPLY 2 INPUT TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> \*\*\* <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # \*\*\* END NETWORK RCHRES GEN-INFO Name Nexits Unit Systems Printer \* \* \* RCHRES # - #<----> User T-series Engl Metr LKFG \* \* \* \* \* \* in out END GEN-INFO \*\*\* Section RCHRES\*\*\* ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG \*\*\* END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR \*\*\*\*\*\*\*\*

END PRINT-INFO HYDR-PARM1 \* \* \* RCHRES Flags for each HYDR Section END HYDR-PARM1 HYDR-PARM2 # – # FTABNO DB50 LEN DELTH STCOR \* \* \* KS <----><----><----><----> \* \* \* END HYDR-PARM2 HYDR-INIT \* \* \* RCHRES Initial conditions for each HYDR section END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult->Tran <-Target vols> <-Grp> <-Member-> \*\*\* <Name># <Name> # tem strg<-factor->strg<Name># #<Name> # #<Name> # #<Name> # #<Name> # #<Name> # #\*\*\*WDM2PRECENGL1PERLND1999EXTNLPRECWDM2PRECENGL1IMPLND1999EXTNLPRECWDM1EVAPENGL0.76PERLND1999EXTNLPETINPWDM1EVAPENGL0.76IMPLND1999EXTNLPETINP END EXT SOURCES EXT TARGETS <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tqap Amd \*\*\* <Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg\*\*\*
COPY 501 OUTPUT MEAN 1 1 48.4 WDM 501 FLOW ENGL REPL
COPY 502 OUTPUT MEAN 1 1 48.4 WDM 502 FLOW ENGL REPL END EXT TARGETS MASS-LINK 

 <Volume>
 <-Grp>
 <-Member-><--Mult-->
 <Target>
 <-Grp>
 <-Member->\*\*\*

 <Name>
 <Name> # #<-factor->
 <Name>
 <Name> # #\*\*\*

 MASS-LINK
 12

 PERLND PWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 12 MASS-LINK 13 0.083333 COPY PERLND PWATER IFWO INPUT MEAN END MASS-LINK 13 MASS-LINK 15 IMPLND IWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 15

END MASS-LINK

END RUN
#### Mitigated UCI File

RUN GLOBAL WWHM4 model simulation END 2011 09 30 START 1955 10 01 RUN INTERP OUTPUT LEVEL 3 0 RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->\*\*\* \* \* \* <-ID-> WDM 26 WilliamsCrossing 12-18-2023.wdm MESSU 25 MitWilliamsCrossing 12-18-2023.MES 27 MitWilliamsCrossing 12-18-2023.L61 MitWilliamsCrossing 12-18-2023.L62 POCWilliamsCrossing 12-18-20232.dat 28 31 POCWilliamsCrossing 12-18-20231.dat 30 END FILES OPN SEQUENCE INDELT 00:15 INGRP 7 PERLND PERLND 8 IMPLND 1 IMPLND 4 IMPLND 8 1 RCHRES COPY 502 COPY 1 COPY 501 601 COPY 2 DISPLY DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1 # - #<-----Title---->\*\*\*TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 2-Dev Bypass FlowratesMAX1Trapezoidal Pond 1MAX 1 2 31 9 1 2 30 1 END DISPLY-INFO1 END DISPLY COPY TIMESERIES NMN \*\*\* # - # NPT 1 1 1 502 1 1 501 1 1 601 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD \*\*\* END OPCODE PARM # # K \*\*\* END PARM END GENER PERLND GEN-INFO <PLS ><-----Name----->NBLKS Unit-systems Printer \*\*\* User t-series Engl Metr \*\*\* # # -\* \* \* in out 7 A/B, Lawn, Flat 27 0 1 1 1 1

END GEN-INFO

A/B, Lawn, Mod

8

1

1

1

1

27

0

9

\*\*\* Section PWATER\*\*\* ACTIVITY # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC \*\*\* 7 1 0 0 0 0 0 0 0 0 0 0 0 8 END ACTIVITY PRINT-INFO # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC \*\*\*\*\*\*\*\* 
 7
 0
 0
 4
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 9

 8
 0
 0
 4
 0
 0
 0
 0
 0
 1
 9
 END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags \*\*\* 

 # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT \*\*\*

 7
 0
 0
 0
 0
 0
 0

 8
 0
 0
 0
 0
 0
 0
 0

 END PWAT-PARM1 PWAT-PARM2 \* \* \* <PLS > PWATER input info: Part 2 LSUR SLSUR 400 0.05 400 0.1 KVARY AGWRC 0.3 0.996 0.3 0.996 # - # \*\*\*FOREST LZSN INFILT 0.8 5 5 7 0 0.8 8 0 END PWAT-PARM2 PWAT-PARM3 \* \* \* PWATER input info: Part 3 <PLS > # - # \*\*\*PETMAX PETMIN INFEXP INFILD DEEPFR BASETP AGWETP / 8 2 0 0 2 0 0 0 0 2 2 0 0 0 0 END PWAT-PARM3 PWAT-PARM4 <PLS > PWATER input info: Part 4 \* \* \* # - # CEPSC UZSN NSUR 0.1 0.5 0.25 INTFW IRC LZETP \*\*\* 0.1 0.7 7 0 7 8 0.25 0.5 0.25 0 0.7 0.25 0.1 END PWAT-PARM4 PWAT-STATE1 <PLS > \*\*\* Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 \*\*\* # \*\*\* CEPS SURS UZS IFWS LZS AGWS GWVS # 7 0 0 0 0 3 1 0 0 0 0 3 1 8 0 0 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><----Name----> Unit-systems Printer \*\*\* User t-series Engl Metr \*\*\* # - # \* \* \* in out 1 1 27 ROADS/FLAT 0 1 1 4 ROOF TOPS/FLAT 1 1 1 27 0 1 1 27 8 SIDEWALKS/FLAT 1 0 END GEN-INFO \*\*\* Section IWATER\*\*\* ACTIVITY \* \* \* # - # ATMP SNOW IWAT SLD IWG IQAL 0 0 0 0 0 1 1 4 0 0 1 0 0 0 0 1 0 0 8 0 0

END ACTIVITY PRINT-INFO <ILS > \*\*\*\*\*\*\* Print-flags \*\*\*\*\*\*\* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL \*\*\*\*\*\*\*\* 1 9 1 0 0 4 0 0 0 0 0 4 0 9 4 0 0 1 8 0 0 4 0 0 0 1 9 END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags \*\*\* # - # CSNO RTOP VRS VNN RTLI \* \* \* 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 8 END IWAT-PARM1 IWAT-PARM2 \* \* \* <PLS > IWATER input info: Part 2 NSUR # - # \*\*\* LSUR SLSUR RETSC 0.1 1 400 0.01 0.1 4 400 0.01 0.1 0.1 400 0.01 0.1 0.1 8 END IWAT-PARM2 IWAT-PARM3 IWATER input info: Part 3 \* \* \* <PLS > # - # \*\*\*PETMAX PETMIN 1 0 0 4 0 0 8 0 0 END IWAT-PARM3 IWAT-STATE1 <PLS > \*\*\* Initial conditions at start of simulation # - # \*\*\* RETS SURS 1 0 0 4 0 0 0 8 0 END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK \* \* \* <-Source-> <Name> # Tbl# \* \* \* <Name> # <-factor-> Dev Basin 1\*\*\* PERLND 7 2.77 2 RCHRES 1 7 2.77 RCHRES PERLND 1 3 PERLND 8 1.65 RCHRES 2 1 PERLND 8 1.65 RCHRES 1 3 1 IMPLND 3.63 RCHRES 1 5 4 1.95 RCHRES 1 5 IMPLND Dev Bypass\*\*\* 7 0.065 COPY 501 PERLND 12 7 0.065 COPY 601 12 PERLND 7 13 PERLND 0.065 COPY 501 7 13 0.065 COPY 601 PERLND 1 0.399 COPY 501 15 IMPLND 0.399 COPY 15 IMPLND 1 601 IMPLND 8 0.075 COPY 501 15 15 IMPLND 8 0.075 COPY 601 -Dev Bypass Flowrates\*\*\* 7 PERLND 0.065 COPY 502 12 PERLND 7 0.065 COPY 502 13 IMPLND 1 0.399 COPY 502 15 15 8 0.075 COPY 502 IMPLND

```
******Routing*****
```

2.77 COPY 1 12 1.65 COPY 1 12 3.63 COPY 1 15 1.95 COPY 1 15 2.77 COPY 1 13 1.65 COPY 1 13 1 COPY 501 17 PERLND 7 PERLND 8 IMPLND 1 IMPLND 4 PERLND 7 PERLND 8 RCHRES 1 END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> \*\*\* <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # <Name> # # \*\*\*
COPY 502 OUTPUT MEAN 1 1 48.4 DISPLY 2 INPUT TIMSER 1
COPY 501 OUTPUT MEAN 1 1 48.4 DISPLY 1 INPUT TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> \*\*\* <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # \*\*\* END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer \* \* \* \* \* \* # - #<----- User T-series Engl Metr LKFG \* \* \* in out 1 Trapezoidal Pond-007 2 1 1 1 28 0 1 END GEN-INFO \*\*\* Section RCHRES\*\*\* ACTIVITY # -# HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG \*\*\*100000 END ACTIVITY PRINT-INFO 

 # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR

 1
 4
 0
 0
 0
 0
 0
 1
 9

 ND PRINT-INFO
 0
 0
 0
 0
 0
 0
 1
 9

 PYR \* \* \* \* \* \* \* \* \* END PRINT-INFO HYDR-PARM1 RCHRES Flags for each HYDR Section \* \* \* 

 # - # VC A1 A2 A3 ODFVFG for each \*\*\* ODGTFG for each
 FUNCT for each

 FG FG FG FG FG possible exit
 \*\*\* possible exit
 possible exit

 1
 0 1 0 0 4 5 0 0 0
 0 0 0 0 0 0
 2 2 2 2 2

 1 END HYDR-PARM1 HYDR-PARM2 # - # FTABNO LEN DELTH STCOR KS DB50 \* \* \* <----><----><----><----><----><----><----><----><----> \* \* \* END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section \*\*\* # - # \*\*\* VOL Initial value of COLIND Initial value of OUTDGT \*\*\* ac-ft for each possible exit for each possible exit <----> 1 0 END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES FTABLE 1 91 5 Area Volume Outflow1 Outflow2 Velocity Travel Time\*\*\* Depth

|        | (ft)     | (acres)  | (acre-ft) | (cfs)    | (cfs)    |
|--------|----------|----------|-----------|----------|----------|
| 0      | .000000  | 0.306703 | 0.00000   | 0.00000  | 0.00000  |
| 0      | .066667  | 0.306703 | 0.020447  | 0.000000 | 0.927778 |
| 0      | .133333  | 0.306703 | 0.040894  | 0.000000 | 0.927778 |
| 0      | .200000  | 0.306703 | 0.061341  | 0.000000 | 0.927778 |
| 0      | .266667  | 0.306703 | 0.081788  | 0.000000 | 0.927778 |
| 0      | .333333  | 0.306703 | 0.102234  | 0.000000 | 0.927778 |
| 0      | .400000  | 0.306703 | 0.122681  | 0.000000 | 0.927778 |
| 0      | .466667  | 0.306703 | 0.143128  | 0.000000 | 0.927778 |
| 0      | .533333  | 0.306/03 | 0.1635/5  | 0.000000 | 0.92///8 |
| 0      | .600000  | 0.306/03 | 0.184022  | 0.000000 | 0.92///8 |
| 0      | .00000/  | 0.306703 | 0.204469  | 0.000000 | 0.92///8 |
| 0      | ./33333  | 0.300703 | 0.224910  | 0.000000 | 0.92///0 |
| 0      | 866667   | 0.300703 | 0.245505  | 0.000000 | 0.927770 |
| 0      | .0000007 | 0.306703 | 0.205010  | 0.000000 | 0.927778 |
| 1      | 000000   | 0.306703 | 0.200237  | 0.000000 | 0.927778 |
| 1      | 066667   | 0 306703 | 0.327150  | 0 000000 | 0.927778 |
| 1      | .133333  | 0.306703 | 0.347597  | 0.000000 | 0.927778 |
| 1      | .200000  | 0.306703 | 0.368044  | 0.000000 | 0.927778 |
| 1      | .266667  | 0.306703 | 0.388491  | 0.000000 | 0.927778 |
| 1      | .333333  | 0.306703 | 0.408938  | 0.000000 | 0.927778 |
| 1      | .400000  | 0.306703 | 0.429385  | 0.000000 | 0.927778 |
| 1      | .466667  | 0.306703 | 0.449832  | 0.000000 | 0.927778 |
| 1      | .533333  | 0.306703 | 0.470279  | 0.000000 | 0.927778 |
| 1      | .600000  | 0.306703 | 0.490725  | 0.000000 | 0.927778 |
| 1      | .666667  | 0.306703 | 0.511172  | 0.000000 | 0.927778 |
| 1      | .733333  | 0.306703 | 0.531619  | 0.000000 | 0.927778 |
| 1      | .800000  | 0.306703 | 0.552066  | 0.000000 | 0.927778 |
| 1      | .866667  | 0.306703 | 0.572513  | 0.000000 | 0.927778 |
| 1      | .933333  | 0.306703 | 0.592960  | 0.000000 | 0.927778 |
| 2      | .000000  | 0.306703 | 0.613407  | 0.000000 | 0.927778 |
| 2      | .066667  | 0.306703 | 0.633854  | 0.000000 | 0.927778 |
| 2      | .133333  | 0.306703 | 0.654301  | 0.000000 | 0.927778 |
| 2      | .200000  | 0.306703 | 0.674747  | 0.000000 | 0.927778 |
| 2      | .266667  | 0.306/03 | 0.695194  | 0.000000 | 0.92///8 |
| 2      | .333333  | 0.306703 | 0.715641  | 0.000000 | 0.92///8 |
| 2      | .400000  | 0.306703 | 0.736088  | 0.000000 | 0.92///8 |
| 2      | 522222   | 0.300703 | 0.750555  | 0.000000 | 0.927770 |
| 2      | 600000   | 0.306703 | 0.770502  | 0.000000 | 0.927778 |
| 2      | 666667   | 0.306703 | 0.817876  | 0.000000 | 0.927778 |
| 2      | .733333  | 0.306703 | 0.838323  | 0.000000 | 0.927778 |
| 2      | .800000  | 0.306703 | 0.858770  | 0.000000 | 0.927778 |
| 2      | .866667  | 0.306703 | 0.879216  | 0.000000 | 0.927778 |
| 2      | .933333  | 0.306703 | 0.899663  | 0.000000 | 0.927778 |
| 3      | .000000  | 0.306703 | 0.920110  | 0.000000 | 0.927778 |
| 3      | .066667  | 0.306703 | 0.940557  | 0.000000 | 0.927778 |
| 3      | .133333  | 0.306703 | 0.961004  | 0.000000 | 0.927778 |
| 3      | .200000  | 0.306703 | 0.981451  | 0.000000 | 0.927778 |
| 3      | .266667  | 0.306703 | 1.001898  | 0.000000 | 0.927778 |
| 3      | .333333  | 0.306703 | 1.022345  | 0.000000 | 0.927778 |
| 3      | .400000  | 0.306703 | 1.042792  | 0.000000 | 0.927778 |
| 3      | .466667  | 0.306703 | 1.063238  | 0.000000 | 0.927778 |
| 3      | .533333  | 0.306703 | 1.083685  | 0.000000 | 0.927778 |
| 3      | .600000  | 0.306703 | 1.104132  | 0.000000 | 0.927778 |
| 3      | .00000/  | 0.306703 | 1.124579  | 0.000000 | 0.92///8 |
| с<br>2 | ./33333  | 0.300703 | 1 165472  | 0.000000 | 0.92///0 |
| с<br>2 | .000000  | 0.300703 | 1 1054/3  | 0.000000 | 0.92///0 |
| ר<br>ר | 033333   | 0.300703 | 1 206267  | 0 000000 | 0.921110 |
| د<br>۵ | 000000   | 0 206703 | 1 2260307 | 0 000000 | 0 927778 |
| 4      | 066667   | 0 306703 | 1 247260  | 0 000000 | 0 927778 |
| 4      | .1333333 | 0.306703 | 1.267707  | 0.000000 | 0.927778 |
| 4      | .200000  | 0.306703 | 1.288154  | 0.000000 | 0.927778 |
| 4      | .266667  | 0.306703 | 1.308601  | 0.000000 | 0.927778 |
| 4      | .333333  | 0.306703 | 1.329048  | 0.000000 | 0.927778 |
| 4      | .400000  | 0.306703 | 1.349495  | 0.00000  | 0.927778 |
| 4      | .466667  | 0.306703 | 1.369942  | 0.00000  | 0.927778 |
| 4      | .533333  | 0.306703 | 1.390389  | 0.00000  | 0.927778 |

| 4.600000  | 0.306703 | 1.410836 | 0.000000 | 0.927778 |
|-----------|----------|----------|----------|----------|
| 4.666667  | 0.306703 | 1.431283 | 0.00000  | 0.927778 |
| 4.733333  | 0.306703 | 1.451729 | 0.00000  | 0.927778 |
| 4.800000  | 0.306703 | 1.472176 | 0.00000  | 0.927778 |
| 4.866667  | 0.306703 | 1.492623 | 0.00000  | 0.927778 |
| 4.933333  | 0.306703 | 1.513070 | 0.00000  | 0.927778 |
| 5.000000  | 0.306703 | 1.533517 | 0.00000  | 0.927778 |
| 5.066667  | 0.306703 | 1.553964 | 0.00000  | 0.927778 |
| 5.133333  | 0.306703 | 1.574411 | 0.00000  | 0.927778 |
| 5.200000  | 0.306703 | 1.594858 | 0.00000  | 0.927778 |
| 5.266667  | 0.306703 | 1.615305 | 0.00000  | 0.927778 |
| 5.333333  | 0.306703 | 1.635751 | 0.00000  | 0.927778 |
| 5.400000  | 0.306703 | 1.656198 | 0.00000  | 0.927778 |
| 5.466667  | 0.306703 | 1.676645 | 0.00000  | 0.927778 |
| 5.533333  | 0.306703 | 1.697092 | 0.00000  | 0.927778 |
| 5.600000  | 0.306703 | 1.717539 | 0.00000  | 0.927778 |
| 5.666667  | 0.306703 | 1.737986 | 0.00000  | 0.927778 |
| 5.733333  | 0.306703 | 1.758433 | 0.00000  | 0.927778 |
| 5.800000  | 0.306703 | 1.778880 | 0.00000  | 0.927778 |
| 5.866667  | 0.306703 | 1.799327 | 0.00000  | 0.927778 |
| 5.933333  | 0.306703 | 1.819773 | 0.00000  | 0.927778 |
| 6.000000  | 0.306703 | 1.840220 | 0.00000  | 0.927778 |
| END FTABL | E 1      |          |          |          |

END FTABLES

| rvπ | COLIDOR |          |
|-----|---------|----------|
| LAI | SUUKLE  | <u> </u> |

| <-Volume->    |   | <member></member> | SsysSgap <mult>Tran</mult> |                 | <-Target      | vols> |    | <-Grp> | <-Member->        | *** |
|---------------|---|-------------------|----------------------------|-----------------|---------------|-------|----|--------|-------------------|-----|
| <name></name> | # | <name> #</name>   | tem stro                   | g<-factor->strg | <name></name> | #     | #  |        | <name> # #</name> | *** |
| WDM           | 2 | PREC              | ENGL                       | 1               | PERLND        | 19    | 99 | EXTNL  | PREC              |     |
| WDM           | 2 | PREC              | ENGL                       | 1               | IMPLND        | 19    | 99 | EXTNL  | PREC              |     |
| WDM           | 1 | EVAP              | ENGL                       | 0.76            | PERLND        | 19    | 99 | EXTNL  | PETINP            |     |
| WDM           | 1 | EVAP              | ENGL                       | 0.76            | IMPLND        | 19    | 99 | EXTNL  | PETINP            |     |

END EXT SOURCES

EXT TARGETS

|                                                                                                                                                                                                                                                            |        | )      |               |     |     |               |                                                                                                                      |       |                   |               |                 |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---------------|-----|-----|---------------|----------------------------------------------------------------------------------------------------------------------|-------|-------------------|---------------|-----------------|----------|
| <-Volu                                                                                                                                                                                                                                                     | ıme->  | <-Grp> | <-Membe       | er- | ->< | Mult>Tran     | <-Volu                                                                                                               | ume-> | <member></member> | Ts            | ys Tgap         | Amd ***  |
| <name></name>                                                                                                                                                                                                                                              | · #    |        | <name></name> | #   | #<  | -factor->strg | <name></name>                                                                                                        | > #   | <name></name>     | t             | em strg         | strg***  |
| RCHRES                                                                                                                                                                                                                                                     | 5 1    | HYDR   | RO            | 1   | 1   | 1             | WDM                                                                                                                  | 1000  | FLOW              | EN            | GL              | REPL     |
| RCHRES                                                                                                                                                                                                                                                     | 5 1    | HYDR   | 0             | 1   | 1   | 1             | WDM                                                                                                                  | 1001  | FLOW              | EN            | GL              | REPL     |
| RCHRES                                                                                                                                                                                                                                                     | 5 1    | HYDR   | 0             | 2   | 1   | 1             | WDM                                                                                                                  | 1002  | FLOW              | EN            | GL              | REPL     |
| RCHRES                                                                                                                                                                                                                                                     | 5 1    | HYDR   | STAGE         | 1   | 1   | 1             | WDM                                                                                                                  | 1003  | STAG              | EN            | GL              | REPL     |
| COPY                                                                                                                                                                                                                                                       | 1      | OUTPUT | MEAN          | 1   | 1   | 48.4          | WDM                                                                                                                  | 701   | FLOW              | EN            | GL              | REPL     |
| COPY                                                                                                                                                                                                                                                       | 501    | OUTPUT | MEAN          | 1   | 1   | 48.4          | WDM                                                                                                                  | 801   | FLOW              | EN            | GL              | REPL     |
| COPY                                                                                                                                                                                                                                                       | 601    | OUTPUT | MEAN          | 1   | 1   | 48.4          | WDM                                                                                                                  | 901   | FLOW              | ΕN            | GL              | REPL     |
| COPY                                                                                                                                                                                                                                                       | 2      | OUTPUT | MEAN          | 1   | 1   | 48.4          | WDM                                                                                                                  | 702   | FLOW              | ΕN            | GL              | REPL     |
| COPY                                                                                                                                                                                                                                                       | 502    | OUTPUT | MEAN          | 1   | 1   | 48.4          | WDM                                                                                                                  | 802   | FLOW              | ΕN            | GL              | REPL     |
| COPY                                                                                                                                                                                                                                                       | 602    | OUTPUT | MEAN          | 1   | 1   | 48.4          | WDM                                                                                                                  | 902   | FLOW              | ΕN            | GL              | REPL     |
| END EX                                                                                                                                                                                                                                                     | T TAF  | RGETS  |               |     |     |               |                                                                                                                      |       |                   |               |                 |          |
|                                                                                                                                                                                                                                                            |        |        |               |     |     |               |                                                                                                                      |       |                   |               |                 |          |
| MASS-L                                                                                                                                                                                                                                                     | JINK   |        |               |     |     |               |                                                                                                                      |       |                   |               |                 |          |
| <volum< td=""><td>ie&gt;</td><td>&lt;-Grp&gt;</td><td>&lt;-Membe</td><td>er-</td><td>-&gt;&lt;</td><td>Mult&gt;</td><td><targe< td=""><td>et&gt;</td><td>&lt;-Grp</td><td><b>&gt;</b>&gt;</td><td>&lt;-Member</td><td><u> </u></td></targe<></td></volum<> | ie>    | <-Grp> | <-Membe       | er- | ->< | Mult>         | <targe< td=""><td>et&gt;</td><td>&lt;-Grp</td><td><b>&gt;</b>&gt;</td><td>&lt;-Member</td><td><u> </u></td></targe<> | et>   | <-Grp             | <b>&gt;</b> > | <-Member        | <u> </u> |
| <name></name>                                                                                                                                                                                                                                              |        |        | <name></name> | #   | #<  | -factor->     | <name></name>                                                                                                        | >     |                   |               | <name> ‡</name> | F #***   |
| MASS-LINK                                                                                                                                                                                                                                                  |        | 2      |               |     |     |               |                                                                                                                      |       |                   |               |                 |          |
| PERLND                                                                                                                                                                                                                                                     | )      | PWATER | SURO          |     |     | 0.083333      | RCHRES                                                                                                               | 3     | INFLO             | WC            | IVOL            |          |
| END                                                                                                                                                                                                                                                        | MASS-  | -LINK  | 2             |     |     |               |                                                                                                                      |       |                   |               |                 |          |
|                                                                                                                                                                                                                                                            |        |        |               |     |     |               |                                                                                                                      |       |                   |               |                 |          |
| MASS                                                                                                                                                                                                                                                       | -LINF  | C      | 3             |     |     |               |                                                                                                                      |       |                   |               |                 |          |
| PERLND                                                                                                                                                                                                                                                     | )      | PWATER | IFWO          |     |     | 0.083333      | RCHRES                                                                                                               | 3     | INFLO             | WC            | IVOL            |          |
| END                                                                                                                                                                                                                                                        | MASS-  | -LINK  | 3             |     |     |               |                                                                                                                      |       |                   |               |                 |          |
|                                                                                                                                                                                                                                                            |        |        |               |     |     |               |                                                                                                                      |       |                   |               |                 |          |
| MASS                                                                                                                                                                                                                                                       | -LINF  | C      | 5             |     |     |               |                                                                                                                      |       |                   |               |                 |          |
| IMPLND                                                                                                                                                                                                                                                     | )      | IWATER | SURO          |     |     | 0.083333      | RCHRES                                                                                                               | 3     | INFLO             | WC            | IVOL            |          |
| END                                                                                                                                                                                                                                                        | MASS-  | -LINK  | 5             |     |     |               |                                                                                                                      |       |                   |               |                 |          |
|                                                                                                                                                                                                                                                            |        |        |               |     |     |               |                                                                                                                      |       |                   |               |                 |          |
| MASS                                                                                                                                                                                                                                                       | -LINF  | C S    | 12            |     |     |               |                                                                                                                      |       |                   |               |                 |          |
| PERLND                                                                                                                                                                                                                                                     | )      | PWATER | SURO          |     |     | 0.083333      | COPY                                                                                                                 |       | INPU              | Γ             | MEAN            |          |
| END                                                                                                                                                                                                                                                        | MASS-  | -LINK  | 12            |     |     |               |                                                                                                                      |       |                   |               |                 |          |
|                                                                                                                                                                                                                                                            |        |        |               |     |     |               |                                                                                                                      |       |                   |               |                 |          |
| MASS                                                                                                                                                                                                                                                       | 5-LINF | ζ      | 13            |     |     |               |                                                                                                                      |       |                   |               |                 |          |

| PERLND<br>END MASS-              | PWATER<br>LINK | IFWO<br>13       |   | 0.083333 | СОРҮ | INPUT | MEAN |
|----------------------------------|----------------|------------------|---|----------|------|-------|------|
| MASS-LINK<br>IMPLND<br>END MASS- | IWATER<br>LINK | 15<br>SURO<br>15 |   | 0.083333 | СОРҮ | INPUT | MEAN |
| MASS-LINK<br>RCHRES<br>END MASS- | OFLOW<br>LINK  | 17<br>OVOL<br>17 | 1 |          | СОРҮ | INPUT | MEAN |

END MASS-LINK

END RUN

Predeveloped HSPF Message File

#### Mitigated HSPF Message File

ERROR/WARNING ID: 341 6 DATE/TIME: 1990/11/26 13:45 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V1 V2 VOL 91 7.9269E+04 8.0160E+04 8.1563E+04 ERROR/WARNING ID: 341 5 DATE/TIME: 1990/11/26 13:45 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: С Α R RDEP1 RDEP2 COUNT 0.0000E+00 2.6720E+04 -6.881E+04 2.5754 2.5754 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1990/11/26 14: 0 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V1 V2 VOL 91 7.9269E+04 8.0160E+04 8.3126E+04 ERROR/WARNING ID: 341 5 DATE/TIME: 1990/11/26 14: 0 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: Α B С RDEP1 RDEP2 COUNT 0.0000E+00 2.6720E+04 -1.157E+05 4.3301 4.3301 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1990/11/26 14:15 RCHRES: 1

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOL 91 7.9269E+04 8.0160E+04 8.4439E+04

ERROR/WARNING ID: 341 5

DATE/TIME: 1990/11/26 14:15

1

RCHRES:

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are:

A B C RDEP1 RDEP2 COUNT 0.0000E+00 2.6720E+04 -1.551E+05 5.8045 5.8045E+00 2

ERROR/WARNING ID: 341 6

DATE/TIME: 1990/11/26 14:30

1

RCHRES:

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOL 91 7.9269E+04 8.0160E+04 8.5354E+04

ERROR/WARNING ID: 341 5

DATE/TIME: 1990/11/26 14:30

1

RCHRES:

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are:

A B C RDEP1 RDEP2 COUNT 0.0000E+00 2.6720E+04 -1.825E+05 6.8315 6.8315E+00 2

ERROR/WARNING ID: 341 6

DATE/TIME: 1990/11/26 14:45

1

RCHRES:

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOL 91 7.9269E+04 8.0160E+04 8.5636E+04

WilliamsCrossing 12-18-2023

12/18/2023 9:08:34 AM

ERROR/WARNING ID: 341 5 DATE/TIME: 1990/11/26 14:45 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: RDEP1 RDEP2 COUNT R 7.1484 7.1484E+00 0.0000E+00 2.6720E+04 -1.910E+05 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1990/11/26 15: 0 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V2 V1 VOL 91 7.9269E+04 8.0160E+04 8.5559E+04 ERROR/WARNING ID: 341 5 DATE/TIME: 1990/11/26 15: 0 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: С RDEP1 RDEP2 COUNT Α В 0.0000E+00 2.6720E+04 -1.887E+05 7.0613 7.0613E+00 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1990/11/26 15:15 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V1 V2 VOL 91 7.9269E+04 8.0160E+04 8.5290E+04 ERROR/WARNING ID: 341 5 DATE/TIME: 1990/11/26 15:15 RCHRES: 1

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0).

Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: С RDEP1 rdep2 COUNT 0.0000E+00 2.6720E+04 -1.806E+05 6.7597 6.7597 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1990/11/26 15:30 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V1 V2 VOL 91 7.9269E+04 8.0160E+04 8.4845E+04 ERROR/WARNING ID: 341 5 DATE/TIME: 1990/11/26 15:30 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: RDEP2 COUNT Α B C RDEP1 0.0000E+00 2.6720E+04 -1.673E+05 6.2597 6.2597E+00 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1990/11/26 15:45 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V1 V2 VOL 91 7.9269E+04 8.0160E+04 8.4343E+04 ERROR/WARNING ID: 341 5 DATE/TIME: 1990/11/26 15:45 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: R C RDEP1 RDEP2 COUNT 0.0000E+00 2.6720E+04 -1.522E+05 5.6968 5.6968E+00 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1990/11/26 16: 0

WilliamsCrossing 12-18-2023

#### RCHRES:

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOL 91 7.9269E+04 8.0160E+04 8.3835E+04

ERROR/WARNING ID: 341 5

1

DATE/TIME: 1990/11/26 16: 0

1

RCHRES:

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are:

A B C RDEP1 RDEP2 COUNT 0.0000E+00 2.6720E+04 -1.370E+05 5.1257 5.1257E+00 2

ERROR/WARNING ID: 341 6

DATE/TIME: 1990/11/26 16:15

1

RCHRES:

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOL 91 7.9269E+04 8.0160E+04 8.3317E+04

ERROR/WARNING ID: 341 5

DATE/TIME: 1990/11/26 16:15

1

RCHRES:

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are:

 A
 B
 C
 RDEP1
 RDEP2
 COUNT

 0.0000E+00
 2.6720E+04
 -1.214E+05
 4.5444
 4.5444E+00
 2

ERROR/WARNING ID: 341 6

DATE/TIME: 1990/11/26 16:30

1

RCHRES:

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V2 VOL V1 91 7.9269E+04 8.0160E+04 8.2767E+04 ERROR/WARNING ID: 341 5 DATE/TIME: 1990/11/26 16:30 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: С RDEP1 RDEP2 COUNT Α R 0.0000E+00 2.6720E+04 -1.049E+05 3.9268 3.9268 2 ERROR/WARNING ID: 341 б DATE/TIME: 1990/11/26 16:45 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V2 V1 VOL 91 7.9269E+04 8.0160E+04 8.2143E+04 ERROR/WARNING ID: 341 5 DATE/TIME: 1990/11/26 16:45 RCHRES: 1 Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are: С RDEP1 RDEP2 COUNT Α В 0.0000E+00 2.6720E+04 -8.621E+04 3.2264 3.2264E+00 2 ERROR/WARNING ID: 341 6 DATE/TIME: 1990/11/26 17: 0 RCHRES: 1 The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are: NROWS V2 V1 VOL 91 7.9269E+04 8.0160E+04 8.1469E+04 ERROR/WARNING ID: 341 5 DATE/TIME: 1990/11/26 17: 0 RCHRES: 1

WilliamsCrossing 12-18-2023

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are:

A B C RDEP1 RDEP2 COUNT 0.0000E+00 2.6720E+04 -6.599E+04 2.4697 2.4697E+00 2

ERROR/WARNING ID: 341 6

DATE/TIME: 1990/11/26 17:15

1

RCHRES:

The volume of water in this reach/mixed reservoir is greater than the value in the "volume" column of the last row of RCHTAB(). To continue the simulation the table has been extrapolated, based on information contained in the last two rows. This will usually result in some loss of accuracy. If depth is being calculated it will also cause an error condition. Relevant data are:

NROWS V1 V2 VOL 91 7.9269E+04 8.0160E+04 8.0760E+04

ERROR/WARNING ID: 341 5

DATE/TIME: 1990/11/26 17:15

1

RCHRES:

Calculation of relative depth, using Newton's method of successive approximations, converged to an invalid value (not in range 0.0 to 1.0). Probably ftable was extrapolated. If extrapolation was small, no problem. Remedy; extend ftable. Relevant data are:

 A
 B
 C
 RDEP1
 RDEP2
 COUNT

 0.0000E+00
 2.6720E+04
 -4.471E+04
 1.6734
 1.6734E+00
 2

### Disclaimer

#### Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

# Appendix B

#### **APPENDIX B - OTHER REPORTS**

Geotechnical Engineering Report by GeoResources, LLC., dated March 26, 2020.

Wetland And Stream Report Williams Crossing Project by David Evans and Associates, Inc, dated September 27, 2023.

Infiltration Evaluation by Earth Solutions NW, LLC, dated February 13, 2024.

5007 Pacific Hwy E., Suite 16 | Fife, WA 98424 | 253.896.1011 | www.georesources.rocks

March 26, 2020

Three's Company LLC 17403-162<sup>nd</sup> Avenue SE Renton, Washington 98058 (425) 226-3999

Attn: Mr. Brian Reas reascrew@comcast.net

> Geotechnical Engineering Report Proposed Residential Development 5224, 5228, 5216 – 15<sup>th</sup> Avenue NE Thurston County, Washington PN: 11809310-600,-700, & -100 Doc ID: ThreesCompanyLLC.15thAveNE.RG

#### INTRODUCTION

This geotechnical engineering report summarizes our site observations, subsurface explorations, laboratory testing, and engineering analyses, and provides geotechnical recommendations and design criteria for the proposed multi-family residential development to be constructed at 5224, 5228, and 5216 – 15<sup>th</sup> Avenue NE in the Olympia area of Thurston County, Washington. The general location of the site is shown on the attached Site Location Map, Figure 1.

Our understanding of the project is based on our email discussions with your civil engineer Mr. Chris Cramer of Patrick Harron & Associates; our December 31, 2019 and February 11, 2020 site visits and subsurface explorations; our understanding of the Thurston County Development Codes; our understanding of the 2016 Thurston County Drainage Design and Erosion Control Manual (TCDDECM); and our experience in the site area. The site consists of three contiguous tax parcels, one of which is currently developed with an existing single-family residence. In addition, two wetlands have been delineated in the lower, northern portion of the site. We understand that the proposed development may include several multi-family residential buildings, single-family residential structures, paved access roads and parking stalls, associated utilities, and stormwater facilities. We understand that the multi-family residential buildings will likely be three-story, wood-framed structures and we anticipate that the single-family residences will be one- to two-story, wood-framed structures. The proposed structures will likely be supported by conventional shallow foundations.

#### SCOPE OF SERVICES

The purpose of our services was to evaluate the surface and subsurface conditions across the site as a basis for providing geotechnical recommendations and design criteria for the proposed residential development. Specifically, the scope of services for this project included the following:

1. Reviewing existing geological, hydrogeological, and geotechnical literature for the site area;

- 2. Exploring the subsurface conditions across the site by monitoring the excavation of nine test pits at select locations and by monitoring the drilling of two borings that were completed as groundwater monitoring wells;
- 3. Collecting select soil samples from the explorations and conducting grain size analyses and moisture content determinations, as appropriate;
- 4. Describing surface and subsurface conditions, including soil type, depth to groundwater, and estimate of high groundwater, if encountered;
- 5. Addressing the appropriate criteria for Geologic Hazards per the current Thurston County Geologic Hazard Areas Title 24.15;
- 6. Providing geotechnical conclusions and recommendations regarding site grading activities including: site preparation, subgrade preparation, fill placement criteria, suitability of on-site soils for use as structural fill, temporary and permanent cut and fill slopes, and drainage and erosion control measures;
- 7. Providing recommendations for seismic design parameters, including 2015 IBC site class;
- 8. Providing geotechnical conclusions and design criteria for shallow foundations, including shallow foundation parameters and floor slabs, including bearing capacity and subgrade modulus, as appropriate;
- 9. Providing recommendations for cast-in-place subgrade walls, including lateral earth pressures and applicable seismic surcharges;
- 10. Providing recommendations for erosion and sediment control during wet weather grading and construction; and,
- 11. Preparing this written *Geotechnical Engineering Report* summarizing our site observations and conclusions, and our geotechnical recommendations and design criteria, along with the supporting data.

The above scope of work was summarized in our *Proposal for Geotechnical Engineering* Services dated December 10, 2019. We received written authorization to proceed by you on December 12, 2019. We understand that groundwater monitoring is being required through the wet season (October 1 through April 30) and we are currently monitoring both wells at the site. Once our monitoring is complete, we will summarize the results in an addendum letter.

#### SITE CONDITIONS

#### **Surface Conditions**

The site is located at 5224, 5228, and 5216 – 15<sup>th</sup> Avenue NE in the Lacey area of Thurston County, Washington. The parcels, when combined, are generally rectangular in shape, measure approximately 475 to 675 feet wide (east to west) by approximately 1,025 to 1,300 feet deep (north to south), and encompasses approximately 18.73 acres. The site is bounded by existing residential development to the east and west, an undeveloped forested parcel to the north, and 15<sup>th</sup> Avenue NE to the south. The southeast portion of the site is currently developed with a single-family residence.

Based off information obtained from the from a site survey completed by MTN2COAST, LLC dated November 6, 2019 and generally confirmed in the field, the site generally slopes down from south to north. From 15<sup>th</sup> Avenue NE, the site gently slopes up to the north at about 3 percent before sloping back down to the north at about 3 to 5 percent. North of the existing residence, in the central portion of the site, the site slopes more steeply down to the north at about 15 to 40 percent. These



steeper slopes have a vertical relief of about 15 to 50 feet. A more gently sloping ridgeline cuts across the northern portion of the site trending southwest to northeast. The ridge slopes down to the northeast at about 3 to 10 percent with side slopes of about 20 to 35 percent. The lower northeast and northwest corners of the site are generally flat to gently sloping down to then northeast and north at about 4 to 6 percent. Total topographic relief across the site is on the order of 64 feet. The existing site configuration and topography is shown on the Site & Exploration Map, Figure 2.

Vegetation across the upper southern half of the site generally consists of grassy areas with scattered coniferous trees. The northern, sloping portion of the site is generally vegetated with a medium to dense stand of fir, cedar, and deciduous trees with a moderate to dense understory of ferns, salal, evergreen huckleberries, and blackberries. No areas of surficial erosion, seeps, springs, or deep-seated slope movement was observed during our site visits. Some small areas of standing water were observed across the lower, northern portion of a trail/footpath that winds across the site.

#### **Site Soils**

The USDA Natural Resource Conservation Service (NRCS) Web Soil Survey maps the site as being underlain by Giles silt Ioam (39), Hoogdal silt Ioam (43), Indianola Ioamy sand (48), and Skipopa silt Ioam (108) soils. The Giles soils, mapped as underlying the upper southeastern portion of the site, are derived from volcanic ash and glacial outwash and form on slopes of 3 to 15 percent. These soils have a "slight" erosion hazard when exposed and are included in hydrologic soils group B. The Hoogdal soils, mapped along the more steeply sloping, central portion of the site, are derived from loess and glaciolacustrine deposits, form on slopes of 15 to 30 percent, have a "moderate" erosion hazard when exposed, and are included in hydrologic soils group D. The Indianola soils, underlying the northeastern and northwestern corners of the site, are derived from sandy glacial outwash and form on slopes of 15 to 30 percent. These soils have a "moderate" erosion hazard when exposed and are included in hydrologic soils group D. The Indianola soils, underlying the northeastern and northwestern corners of the site, are derived from sandy glacial outwash and form on slopes of 15 to 30 percent. These soils have a "moderate" erosion hazard when exposed and are included in hydrologic soils group A. The Skipopa soils, mapped in the upper southwestern and lower northern portions of the site, are derived from volcanic ash over glaciomarine deposits, form on slopes of 3 to 15 percent, have a "slight" erosion hazard when exposed, and are included in hydrologic soils group D. A copy of the soils map for the site vicinity is provided as Figure 3.

#### **Site Geology**

The Geologic Map of the Lacey 7.5-minute Quadrangle, Thurston County, Washington (Logan et al., 2003) maps the site as being underlain by Vashon recessional sand and minor silt (Qgos). These soils were generally deposited during the most recent Vashon Stade of the Fraser Glaciation, some 12,000 to 15,000 years ago. The recessional outwash is typically comprised of poorly-sorted, lightly stratified mixture of sand and gravel that was deposited by meltwater streams emanating from the retreating ice mass. Because the recessional outwash soils were not subsequently overridden by the ice mass, they are considered to be normally-consolidated and generally provide moderate strength and compressibility characteristics, where undisturbed. Infiltration characteristics of outwash depends on the distribution of sand and gravel particles, but is generally favorable. An excerpt of the above reference geologic map is attached as Figure 4.

#### **Subsurface Explorations**

On December 31, 2019 a representative from GeoResources, LLC (GeoResources) visited the site and monitored the excavation of nine test pits to depths of about 8.5 to 13 feet below the existing ground surface. We returned to the site on February 11, 2020 to monitor the drilling of two



borings to 36.5 to 51.5 feet below the existing ground surface. The test pits were excavated by a licensed earthwork contractor operating a track-mounted excavator and the borings were drilled by a licensed drilling contractor operating a small track-mounted drill rig, both working under contract for GeoResources.

The specific number, locations, and depths of our explorations were selected based on the configuration of the proposed development and were adjusted in the field based on consideration for underground utilities, existing site conditions, site access limitations, and encountered stratigraphy. Representative soil samples obtained from the test pits were placed in sealed plastic bags and then taken to our laboratory for further examination and testing as deemed necessary. Soil densities presented on the test pit logs are based on the difficulty of excavation and our experience. The test pits were backfilled with the excavated soils and bucket tamped, but not otherwise compacted, while the borings were completed as groundwater monitoring wells by the driller in general accordance with Washington State Department of Ecology requirements.

During drilling, soil samples were obtained at 2½- and 5-foot depth intervals in accordance with Standard Penetration Test (SPT) as per the test method outlined by ASTM D1586. The SPT method consists of driving a standard 2-inch-diameter split-spoon sampler 18-inches into the soil with a 140-pound hammer. The number of blows required to drive the sampler through each 6-inch interval is counted, and the total number of blows struck during the final 12 inches is recorded as the Standard Penetration Resistance, or "SPT blow count". The resulting Standard Penetration Resistance values indicate the relative density of granular soils and the relative consistency of cohesive soils.

The subsurface explorations completed as part of this evaluation indicate the subsurface conditions at specific locations only, as actual subsurface conditions can vary across the site. Furthermore, the nature and extent of such variation would not become evident until additional explorations are performed or until construction activities have begun.

The soils encountered were visually classified in accordance with the Unified Soil Classification System (USCS) and ASTM D2488. The approximate locations of our explorations are indicated on the attached Site & Exploration Map, Figure 2. The USCS is included in Appendix A as Figure A-1, while descriptive logs of the soils encountered are included as Figures A-2 through A-6.

#### **Subsurface Conditions**

Our test pit explorations encountered relatively uniform subsurface conditions that, in our opinion, generally agree with the mapped stratigraphy within the site vicinity. In general, our test pits encountered about 0.1 to 1 foot of topsoil overlying about 1 to 3 feet of brown silty sand in a loose, moist condition. We interpret these soils to be consistent with weathered outwash. Underlying the weathered soils, our explorations encountered brown-grey sand to sand with silt in a loose to medium dense, moist condition to the full depth explored. We interpret these soils to be consistent with recessional outwash. Overlying the outwash in Test Pits TP-2 and TP-7, we encountered about 1 to 8.5 feet of brown to tan silt in a medium stiff, moist condition. We interpret these soils to be consistent with recessional lacustrine or slackwater deposits.

Our borings encountered similar subsurface conditions across the site. Boring B-1, located in the lower, northern portion of the site encountered about 1.5 feet of silty topsoil overlying about 4 feet of mottled tan silt in a stiff, moist condition. Underlying these upper fine-grained soils, our boring encountered sand to sand with silt in a loose to medium dense, moist to wet condition to the full depth explored. Silt interbeds were encountered within these sandy soils at about 16 and 30



feet below the ground surface. Boring B-2, in the upper portion of the site, encountered about 1 foot of sandy dark brown topsoil overlying about 1.5 feet of tan to brown silty sand in a loose, moist condition. Underlying these upper soils, our exploration encountered grey brown sand to sand with silt in a medium dense, moist condition to the full depth explored. We interpret these soils to be consistent with weathered outwash over recessional outwash.

#### **Laboratory Testing**

Geotechnical laboratory tests were performed on select samples retrieved from the test pits to determine soil index and engineering properties encountered. Laboratory testing included visual soil classification per ASTM D2488, moisture content determinations per ASTM D2216, and grain size analyses per ASTM D6913 standard procedures. The results of the laboratory tests are included in Appendix B.

#### **Groundwater Conditions**

Groundwater seepage was not observed in our test pit explorations at the time of excavation. However, groundwater was encountered in our lower boring (B-1) at about 31 feet below the ground surface at the time of drilling. A small seepage zone was also observed in Boring B-1 at about 16 feet below ground surface where fine grained soils were encountered. We interpret the observed groundwater seepage to be associated with a localized perched groundwater table and the lower groundwater to be more representative of regional levels. Perched groundwater typically develops when the vertical infiltration of precipitation through a more permeable soil is slowed at depth by a deeper, less permeable soil type. We anticipate fluctuations in the local groundwater levels will occur in response to precipitation patterns, off-site construction activities, and site utilization.

#### ENGINEERING CONCLUSIONS AND RECOMMENDATIONS

Based on the results of our data review, site reconnaissance, subsurface explorations and our experience in the area, it is our opinion that the site is suitable for the proposed residential development. Infiltration into the recessional sand soils appears to be feasible at the site, especially in the upper portion of the site. Discontinuous impermeable fine-grained deposits were encountered within the recessional sands in the northern portion of the site and may limit facility siting and depths if proposed in those areas. Pertinent conclusions and geotechnical recommendations regarding the design and construction of the proposed development are presented below.

#### Landslide Hazard Areas - Per TCC 24.03.010

According to the Thurston County Code 24.03.010, landslide hazard areas means those areas which are potentially subject to risk of mass movement due to a combination of geologic, topographic, and hydrologic factors; and where the vertical height is fifteen feet or more, excluding those wholly manmade slopes created under the design and inspection of a geotechnical professional. The following areas are considered to be subject to landslide hazards:

- A. Any area with a combination of:
  - 1. Slopes of fifteen percent or steeper, and
  - 2. Impermeable subsurface material (typically silt and clay), frequently interbedded with granular soils (predominantly sand and gravel), and



- 3. Springs or seeping groundwater during the wet season (November to February);
- B. Steep slopes of forty percent or greater;
- C. Any areas located on a landslide features which has shown movement during the Holocene Epoch (post glacial) or which is underlain by mass wastage debris from that period of time;
- D. Known hazard areas, such as areas of historic failures, including areas of unstable, old and recent landslides;
- E. Breaks between landslide hazard areas shall be considered part of the landslide hazard area under the following condition: The length of the break is twice the height or less than the height of the slope below or above the break, whichever is greater; and the combined height is fifteen feet or more. When this condition is present, the upper and lower landslide hazard areas and the break shall be combined into one landslide hazard area.

Slopes of 15 percent or steeper are present across the central and northern portions of the site. Our lower boring encountered fine grained deposits interbedded with more granular soil; however, we would not interpret these to be adverse contacts based on the depth at which they were encountered. No evidence of springs or groundwater seepage along the slopes at the site were observed during our site visit. Groundwater was encountered at approximately Elevation 73 feet at the location of Boring B-1. This elevation is approximately the same as the wetlands delineated in the lower northern portion of the site.

No evidence of seepage on slopes, landslide activity, or significant erosion was observed at the site at the time of our visit. Slopes of 40 percent or steeper with 15 feet or more of vertical relief were not observed or mapped at the site. No planes of weakness, geomorphic features, tension cracks, or structural failure indicative of slope failure, toppling or leaning tress, gullying or surface erosion were observed at the site at the time of our visit. No areas of soft or liquefiable soils, alluvial deposits, or areas at risk of seismically induce mass movement were observed or mapped at or within 300 feet of the site.

Based on the above, it does appear that the site has one of the above listed indicators (slopes of forty percent); however, no evidence of landslide activity was observed at the site. Therefore, it is our opinion that no prescriptive buffer should be required by the County. Building setbacks in accordance with the 2015 International Building Code (IBC) may still be required by the Thurston County building department.

#### **Recommended Setback from Steep Slopes**

The 2015 International Building Code (IBC), Section 1808.7 requires a building setback from slopes that are steeper than 3H:1V (Horizontal: Vertical) or 33 percent with greater than 10 feet in vertical height, unless evaluated and reduced and/or a structural setback is provided by a licensed geotechnical engineer. The setback distance is calculated based on the vertical height of the slope. The typical 2015 IBC setback from the top of the slope equals one third the height of the slope or 40 feet, whichever is less, while a setback from the toe of the slope equals one half the height of the slope or 15 feet, whichever is less.

As stated above, portions of the site steeper than 33 percent. These slopes have vertical heights on the order of 10 to 15 feet in the northeastern portion of the site. Per the 2015 IBC, these



slopes should have a minimum setback of 4 to 5 feet from the top of the slopes and 5 to 8 feet from the toe of the slopes.

Where the setback from the top of the slope cannot be met, a structural setback may be used. A structural setback is created by deepening the foundation elements so that, when measured horizontally from the font of the foundation to the face of the slope, the top of slope setback discussed above is met. If necessary, we can provide structural setback recommendations at your request.

#### Erosion Hazards - Per TCC 24.03.010

According to the TCC Critical Areas 24.03.010, an erosion hazard area means land characterized by soil types that are subject to severe erosion when disturbed. These include, but are not limited to, those identified by the United States Department of Agriculture Soil Conservation Service Soil Classification System, with a water erosion hazard of "severe" or "high" (See Table 24.15-3, Erosion Soils of Thurston County). These areas may not be highly erodible until or unless the soil is disturbed by activities such as clearing or grading.

As previously stated, the site is underlain by Giles silt loam (39) and Skipopa silt loam (108) which both have a "slight" erosion hazard when exposed and Hoogdal silt loam (43) and Indianola loamy sand (48) which have a "moderate" erosion hazard when exposed. No evidence of active or ongoing erosion was observed at the time of our site visits. In our opinion, the site does not have an active erosion hazard.

#### **Seismic Design**

The site is located in the Puget Sound region of western Washington, which is seismically active. Seismicity in this region is attributed primarily to the interaction between the Pacific, Juan de Fuca and North American plates. The Juan de Fuca plate is subducting beneath the North American plate at the Cascadia Subduction Zone (CSZ). This produces both intercrustal (between plates) and intracrustal (within a plate) earthquakes. In the following sections we discuss the design criteria and potential hazards associated with the regional seismicity.

#### Seismic Site Class

Based on our observations and the subsurface units mapped at the site, we interpret the structural site conditions to correspond to a seismic Site Class "D" in accordance with the 2015 IBC documents and American Society of Civil Engineers (ASCE) standard 7-10 Chapter 20 Table 20.3-1. This is based on the range of SPT (Standard Penetration Test) blow counts for the soils encountered in our borings. These conditions are assumed to be representative for the subsurface across the site.

#### Design parameters

The U.S. Geological Survey (USGS) completed probabilistic seismic hazard analyses (PSHA) for the entire country in November 1996, which were updated and republished in 2002 and 2008. We used the *ATC Hazard by Location* website to estimate seismic design parameters at the site. Table 1, below, summarizes the recommended design parameters.



| Spectral Response Acceleration (SRA) and Site<br>Coefficients | Short Period            | 1 Second Period         |
|---------------------------------------------------------------|-------------------------|-------------------------|
| Mapped SRA                                                    | S <sub>s</sub> = 1.319  | S <sub>1</sub> = 0.536  |
| Site Coefficients (Site Class D)                              | $F_a = 1.000$           | F <sub>v</sub> = 1.500  |
| Maximum Considered Earthquake SRA                             | S <sub>MS</sub> = 1.319 | S <sub>M1</sub> = 0.804 |
| Design SRA                                                    | $S_{DS} = 0.880$        | $S_{D1} = 0.536$        |

## TABLE 1: 2015 IBC PARAMETERS FOR DESIGN OF SEISMIC STRUCTURES

#### Peak Ground Acceleration

The mapped peak ground acceleration (PGA) for this site is 0.5g. To account for site class, the PGA is multiplied by a site amplification factor ( $F_{PGA}$ ) of 1.0. The resulting site modified peak ground acceleration (PGA<sub>M</sub>) is 0.5g. In general, estimating seismic earth pressures ( $k_h$ ) by the Mononobe-Okabe method are taken as 50 percent of the PGA<sub>M</sub>, or 0.25g.

#### <u>Seismic Hazards</u>

Earthquake-induced geologic hazards may include liquefaction, lateral spreading, slope instability, and ground surface fault rupture. Liquefaction is a phenomenon where there is a reduction or complete loss of soil strength due to an increase in pore water pressure in soils. The increase in pore water pressure is induced by seismic vibrations. Liquefaction primarily affects geologically recent deposits of loose, uniformly graded, fine-grained sands and granular silts that are below the groundwater table. Based on our review of the Department of Natural Resources Liquefaction Susceptibility Map (Geologic Information Portal) the site appears to be in an area mapped as having a "low to moderate" susceptibility to liquefaction (Figure 5). In our opinion, this coincides with the conditions observed in the explorations performed at the site. Because of the relatively low susceptibility of site soils to liquefaction, it is our opinion that the likelihood of lateral spreading is also low.

Based on our review of the Department of Natural Resources Geologic Hazards Map (Geologic Information Portal), the site is located about 2 miles northeast of the Olympia structure faults (Figure 6). No evidence of ground fault rupture was observed in the subsurface explorations or out site reconnaissance. Therefore, in our opinion, the proposed structure should have no greater risk for ground fault rupture than other structures located in the area.

#### **Foundation Support**

Based on the subsurface conditions encountered across the site and our understanding of the preliminary plans, we recommend that spread footings be founded on the medium dense native soils or on structural fill that extends to suitable native soils.

The soil at the base of the footing excavations should be disturbed as little as possible. All loose, soft or unsuitable material should be removed or recompacted, as appropriate. A representative from our firm should observe the foundation excavations to determine if suitable bearing surfaces have been prepared.



We recommend a minimum width of 24 inches for isolated footings and at least 18 inches for continuous wall footings. All footing elements should be embedded at least 18 inches below grade for frost protection. Footings founded as described above on the medium dense sand or on imported clean "**Structural Fill**" may be designed with a maximum allowable bearing pressure of 2,000 psf (pounds per square foot). The weight of the footing and any overlying backfill may be neglected. The allowable bearing value may be increased by one-third for transient loads such as those induced by seismic events or wind loads.

Lateral loads may be resisted by friction on the base of footings and floor slabs and as passive pressure on the sides of footings. We recommend that an allowable coefficient of friction of 0.35 be used to calculate friction between the concrete and the underlying soil. Passive pressure may be determined using an allowable equivalent fluid density of 300 pcf (pounds per cubic foot). Factors of safety have been applied to these values.

We estimate that settlements of footings designed and constructed as recommended will be less than 1 inch, for the anticipated load conditions, with differential settlements between comparably loaded footings of ½ inch or less. Most of the settlements should occur essentially as loads are being applied; however, disturbance of the foundation subgrade during construction could result in larger settlements than predicted. We recommend that all foundations be provided with footing drains constructed in accordance with the 2015 IBC Section 1805.4.2.

#### **Floor Slab Support**

Slab-on-grade floors, where constructed, should be supported on the medium dense recessional outwash or on structural fill prepared as described above. Any areas of old fill material should be evaluated during grading activity for suitability of structural support. Areas of significant organic debris should be removed.

We recommend that floor slabs be directly underlain by a minimum 4-inch thick capillary break that consists of clean, granular material, such as pea gravel or %-inch clean crushed rock and should contain less than 2 percent fines. This layer should be placed in one lift and compacted to an unyielding condition.

A synthetic vapor retarder is recommended to control moisture migration through the slabs. This is of particular importance where the foundation elements are underlain by medium dense recessional soils, or where moisture migration through the slab is an issue, such as where adhesives are used to anchor carpet or tile to the slab.

A subgrade modulus of 200 pounds per cubic inch (pci) may be used for floor slab design. We estimate that settlement of the floor slabs designed and constructed as recommended, will be  $\frac{1}{2}$ -inch or less over a span of 50 feet.

#### Cast-in-Place Subgrade/Basement Walls

The lateral pressures acting on retaining walls (such as basement or grade separation walls) will depend upon the nature and density of the soil behind the wall as well as the presence or absence of hydrostatic pressure. Below we provide recommended design values and drainage recommendations for retaining walls.

#### <u>Design Values</u>

For walls backfilled with granular well-drained soil and a level backslope, the design active pressure may be taken as 35 pcf (equivalent fluid density). For walls that are braced or otherwise



restrained, the design at rest pressure may be taken as 55 pcf. For the condition of an inclined back slope, higher lateral pressures would act on the walls. For a 3H:1V (Horizontal to Vertical) slope above the wall, the active pressure may be taken as 48 pcf; for a 2H:1V back slope condition, a wall design pressures of 55 pcf may be assumed If basement walls taller than 6 feet are required, as seismic surcharge of 10H should be included where required by the code. If walls will be constructed with a backslope <u>and</u> will be braced or otherwise restrained against movement, we should be notified so that we can evaluate the anticipated conditions and recommend an appropriate at-rest earth pressure.

Lateral loads may be resisted by friction on the base of footings and as passive pressure on the sides of footings and the buried portion of the wall, as described in the **"Foundation Support**" section of this report.

#### Wall Drainage

Adequate drainage behind retaining structures is imperative. Positive drainage which controls the development of hydrostatic pressure can be accomplished by placing a zone of drainage behind the walls. Granular drainage material should contain less than 2 percent fines and at least 30 percent retained on the US No. 4 sieve.

A minimum 4-inch diameter perforated or slotted PVC pipe should be placed in the drainage zone along the base and behind the wall to provide an outlet for accumulated water and direct accumulated water to an appropriate discharge location. We recommend that a nonwoven geotextile filter fabric be placed between the soil drainage material and the remaining wall backfill to reduce silt migration into the drainage zone. The infiltration of silt into the drainage zone can, with time, reduce the permeability of the granular material. The filter fabric should be placed such that it fully separates the drainage material and the backfill, and should be extended over the top of the drainage zone. Typical wall drainage and backfilling details are shown on Figure 7.

A geocomposite drain mat may also be used instead of free draining soils, provided it is installed in accordance with the manufacturer's instructions. A soil drainage zone should extend horizontally at least 18 inches from the back of the wall. The drainage zone should also extend from the base of the wall to within 1 foot of the top of the wall. The soil drainage zone should be compacted to approximately 90 percent of the maximum dry density (MDD), as determined in accordance with ASTM D1557. Over-compaction should be avoided as this can lead to excessive lateral pressures on the wall.

#### **Temporary Excavations**

All job site safety issues and precautions are the responsibility of the contractor providing services/work. The following cut/fill slope guidelines are provided for planning purposes only. Temporary cut slopes will likely be necessary during grading operations or utility installation. All excavations at the site associated with confined spaces, such as utility trenches and retaining walls, must be completed in accordance with local, state, or federal requirements including Washington Administrative Code (WAC) and Washington Industrial Safety and Health Administration (WISHA). Excavation, trenching, and shoring is covered under WAC 296-155 Part N.

Based on WAC 296-155-66401, it is our opinion that the loose to medium dense outwash soils on the site would be classified as Type C soils. According to WAC 296-155-66403, for temporary excavations of less than 20 feet in depth, the side slopes in Type C soils should be sloped at a maximum inclination of 1½H:1V or flatter from the toe to top of the slope. All exposed slope faces should be covered with a durable reinforced plastic membrane during construction to prevent slope



raveling and rutting during periods of precipitation. These guidelines assume that all surface loads are kept at a minimum distance of at least one half the depth of the cut away from the top of the slope and that significant seepage is not present on the slope face. Flatter cut slopes will be necessary where significant raveling or seepage occurs, or if construction materials will be stockpiled along the slope crest.

Where it is not feasible to slope the site soils back at these inclinations, a retaining structure should be considered. Retaining structures greater than 4-feet in height (bottom of footing to top of structure) or that have slopes of greater than 15 percent above them, should be engineered per Washington Administrative Code (WAC 51-16-080 item 5). This information is provided solely for the benefit of the owner and other design consultants and should not be construed to imply that GeoResources assumes responsibility for job site safety. It is understood that job site safety is the sole responsibility of the project contractor.

#### **Permanent Cut and Fill Slopes**

Fill slopes constructed on grades that are steeper than 5H:1V should be constructed in accordance with Appendix J of the 2015 IBC and should utilize proper keying and benching methods. The benches should be 1½ times the width of the equipment used for grading and be a maximum of 3 feet in height. Subsurface drainage may be required in areas where significant seepage is encountered during grading. Collected drainage should be directed to an appropriate discharge point. Surface drainage should be directed away from all slope faces.

Permanent slopes in soil should be no steeper than 2H:1V. All permanent slopes should be protected from erosion as soon as feasible after grading is completed. Typical erosion control methods per the 2016 Thurston County Drainage Design and Erosion Control Manual should be sufficient for proposed site grading activities. Additionally, permanent slopes should be planted with a hardy vegetative groundcover, mulched, or armored with quarry spalls as soon as feasible after grading is completed.

#### **Site Drainage**

All ground surfaces, pavements and sidewalks at the site should be sloped away from the structures. Surface water runoff should be controlled by a system of curbs, berms, drainage swales, and or catch basins, and conveyed to an appropriate discharge point.

We recommend that footing drains are installed for the residence in accordance with the 2015 IBC, Section 1805.4.2, and basement walls (if utilized) have a wall drain as describe above. The roof drain should not be connected to the footing drain.

#### **Stormwater Infiltration**

Based on our subsurface explorations and our site observations, it is our opinion that onsite infiltration of stormwater runoff generated by the proposed development is feasible in the wellgraded to poorly graded sand with variable silt and gravel content encountered across the upper, southern portions of the site.

Prior to the selection of an infiltration facility location, all minimum vertical separation and horizontal separation requirements should be considered. Per the 2016 TCDDECM, Volume III, Section 2.3, a minimum vertical separation of 1 foot is required between the bottom of a non-treatment infiltration Best Management Practice (BMP) and the top of an impermeable layer, such as hard pan, that serves 10,000 square feet (sf) of hard surfacing or less. A minimum of 3 feet of



vertical separation is required for non-treatment infiltration BMPs serving 10,000 sf or more. Infiltration BMPs that provide water quality treatment for the stormwater require a minimum vertical separation of 5 feet between the bottom of the facility and the top of a restrictive layer, such as a seasonal high water table (2016 TCDDECM, Volume I, Section 4.7.3.3). Per Volume V, Chapter 2.2.6.8.1 of the 2016 TCDDECM, permeable pavement should not be located where seasonal high groundwater or an underlying impermeable/low permeable layer would create saturated conditions within 1 foot of the bottom of the lowest gravel base course. Based on our subsurface explorations, it is our opinion the above minimum vertical separation criteria could be met in the upper southern portions of the site. Vertical separation criteria could potentially be met in the lower, northern portion of the site but will be dependent on the proposed site grading. However, horizontal setback would also have to be considered, especially from steep slopes.

Soil gradation analyses were completed in accordance with ASTM D6913 and a site specific infiltration rate was determined in accordance with the Volume III Appendix III-A Method 3 – Soil Grain Size Analysis Method. Based on the Massmann equation we recommend a preliminary infiltration rate for the sand with silt soils of 4 inches per hour be used. Correction factors for testing method (0.4) and plugging (0.8) have been applied to this value in accordance with the 2016 TCDDECM. A factor of safety for geometry and below grade facilities should be applied by the civil engineer in accordance with the 2016 TCDDECM.

While the above recommended infiltration rate is suitable for the design of permeable pavement sections, the infiltration rate may not be suitable for treatment of runoff from the pollution generating surfaces. Appropriate soil amendments should be added to the soils below permeable pavement, if used, for water quality treatment in accordance with the 2016 DDECM.

We recommend that a representative from our firm be onsite at the time of excavation of the proposed infiltration facilities to verify that the soils encountered during construction are consistent with the soils observed in our subsurface explorations. In-situ infiltration testing should be performed at the time of stormwater design to verify the recommended infiltration rate within the proposed facility locations.

Appropriate design, construction, and maintenance are required to ensure the infiltration rate can be effectively maintained over time. It should be noted that special care is required during the grading and construction periods to avoid fine sediment contamination of the infiltration system. This may be accomplished through the use of an alternative stormwater management location during construction or by leaving the bottom of the system 1 to 2 feet higher than the design elevation and subsequently excavating to the finished grade after paving and landscaping installation are complete. All contractors, builders, and subcontractors working on the site should be advised to avoid allowing "dirty" stormwater to flow into the stormwater system during construction and landscaping activities. No concrete trucks should be washed or cleaned onsite.

All proposed infiltration facilities should be designed and constructed in accordance with the 2016 TCDDECM. All minimum separation, setback requirements, and infeasibility criteria per the 2016 TCDDECM should be considered prior to the selection, design, and location of any stormwater facility for the proposed development. The slopes located in the central portion of the site slope down to the north at greater than 15 percent. Per Volume V Appendix E of the 2016 TCDDECM, slopes steeper than 15 percent with greater than 10 feet of vertical relief are required to be setback at least 50 feet from the top of the slope.



#### EARTHWORK RECOMMENDATIONS

#### **Site Preparation**

All structural areas on the site to be graded should be stripped of vegetation, organic surface soils, and other deleterious materials including existing structures, foundations or abandoned utility lines. Organic topsoil is not suitable for use as structural fill, but may be used for limited depths in non-structural areas. Based on our subsurface exploration, we anticipate that stripping depth will likely range from about 6 to 12 inches. Areas of thicker topsoil or organic debris may be encountered in areas of heavy vegetation or depressions.

Where placement of fill material or structural elements is required, the stripped/exposed subgrade areas should be compacted to a firm and unyielding surface prior to placement of new fill. Excavations for debris removal should be backfilled with structural fill compacted to the densities described in the "**Structural Fill**" section of this report.

We recommend that a member of our staff evaluate the exposed subgrade conditions after removal of vegetation and topsoil stripping is completed and prior to placement of structural fill. The exposed subgrade soil should be proof-rolled with heavy rubber-tired equipment during dry weather or probed with a ½-inch diameter steel T-probe during wet weather conditions.

Soft, loose or otherwise unsuitable areas delineated during proof-rolling or probing should be recompacted, if practical, or over-excavated and replaced with structural fill. The depth and extent of overexcavation should be evaluated by our field representative at the time of construction. The areas of old fill material should be evaluated during grading operations to determine if they need mitigation, recompaction, or removal.

#### **Structural Fill**

All material placed as fill associated with mass grading, as utility trench backfill, under building areas, or under roadways should be placed as structural fill. The structural fill should be placed in horizontal lifts of appropriate thickness to allow adequate and uniform compaction of each lift. Structural fill should be compacted to at least 95 percent of maximum dry density (MDD) as determined in accordance with ASTM D1557.

The appropriate lift thickness will depend on the structural fill characteristics and compaction equipment used, but it is typically limited to 4- to 6-inches for hand operated equipment. For planning purposes, we recommend a maximum loose-lift thickness of 12 inches for heavier equipment such as hoe-packs or drum rollers. We recommend that the appropriate lift thickness be evaluated by our field representative during construction. We recommend that our representative be present during site grading activities to observe the work and perform field density tests.

The suitability of material for use as structural fill will depend on the gradation and moisture content of the soil. As the amount of fines (material passing US No. 200 sieve) increases, soil becomes increasingly sensitive to small changes in moisture content and adequate compaction becomes more difficult to achieve. During wet weather, we recommend a material such as well-graded sand and gravel with less than 5 percent (by weight) passing the US No. 200 sieve based on that fraction passing the <sup>3</sup>/<sub>4</sub>-inch sieve, such as *Gravel Backfill for Walls* (WSDOT 9-03.12(2)). If prolonged dry weather prevails during the earthwork and foundation installation phase of construction, higher fines content (up to 10 to 12 percent) may be acceptable.



Material placed for structural fill should be free of debris, organic matter, trash, and cobbles greater than 6-inches in diameter. The moisture content of the fill material should be adjusted as necessary for proper compaction.

#### Suitability of On-Site Materials as Fill

During dry weather construction, any non-organic onsite soil may be considered for use as structural fill, provided it meets the criteria described above in the "**Structural Fill**" section and can be compacted as recommended. If the soil material is over optimum moisture at the time of excavation, it will be necessary to aerate or dry the soil prior to placement as structural fill. We generally did not observe the site soils to be excessively moist at the time of our subsurface explorations.

The recessional outwash encountered in our explorations is generally comparable to *Common Borrow* (WSDOT Standard Specification 9-03.14(3)). These soils should be suitable for use as structural fill provided the moisture content is maintained within 2 to 3 percent of the optimum moisture level. Because of the fines content in the shallow recessional lacustrine soils encountered in the lower portion of the site, we do not recommend that these soils be used for structural fill. These shallow, silty soils may be used as fill in non-structural areas.

We recommend that completed graded-areas be restricted from traffic or protected prior to wet weather conditions. The graded areas may be protected by paving, placing asphalt-treated base, a layer of free-draining material such as pit run sand and gravel or clean crushed rock material containing less than 5 percent fines, or some combination of the above.

#### **Erosion Control**

Weathering, erosion and the resulting surficial sloughing and shallow land sliding are natural processes. As noted, no evidence of surficial raveling or sloughing was observed at the site. To manage and reduce the potential for these natural processes, we recommend erosion protection measures be in place prior to grading activity on the site. Erosion hazards can be mitigated by applying Best Management Practices (BMP's) outlined in the 2016 TCDDECM. To manage and reduce the potential processes, we recommend the following:

- No drainage of concentrated surface water or significant sheet flow onto or near the steep slope area.
- No fill should be placed within any buffers or setback areas unless retained by engineered retaining walls or constructed as an engineered fill.
- Grading should be limited to providing surface grades that promote surface flows away from the top of slope to an appropriate discharge location.

If the recommended erosion and sediment control BMPs are properly implemented and maintained, it is our opinion that the planned development should not increase the potential for erosion of the site.

#### Wet Weather and Wet Condition Considerations

In the Puget Sound area, the wet season generally begins October 1<sup>st</sup> and continues through about April 30<sup>th</sup>, although rainy periods could occur at any time of year. Therefore, it is strongly encouraged that earthwork be scheduled during the dry weather months. Most of the soil at the



site does not contain sufficient fines to produce an unstable mixture when wet. Soils with high fines contents are highly susceptible to changes in water content and tends to become unstable and impossible to proof-roll and compact if the moisture content exceeds the optimum.

In addition, during wet weather months, the groundwater levels could increase, resulting in seepage into site excavations. Performing earthwork during dry weather would reduce these problems and costs associated with rainwater, construction traffic, and handling of wet soil. However, should wet weather/wet condition earthwork be unavoidable, the following recommendations are provided:

- The ground surface in and surrounding the construction area should be sloped as much as possible to promote runoff of precipitation away from work areas and to prevent ponding of water.
- Work areas or slopes should be covered with plastic when not being worked. The use of sloping, ditching, sumps, dewatering, and other measures should be employed as necessary to permit proper completion of the work.
- Earthwork should be accomplished in small sections to minimize exposure to wet conditions. That is, each section should be small enough so that the removal of unsuitable soils and placement and compaction of clean structural fill could be accomplished on the same day. The size of construction equipment may have to be limited to prevent soil disturbance. It may be necessary to excavate soils with a backhoe, or equivalent, and locate them so that equipment does not pass over the excavated area. Thus, subgrade disturbance caused by equipment traffic would be minimized.
- Fill material should consist of clean, well-graded, sand and gravel, of which not more than 5 percent fines by dry weight passes the No. 200 mesh sieve, based on wet-sieving (ASTM D1140) the fraction passing the ¾-inch mesh sieve. The gravel content should range from between 20 and 50 percent retained on a No. 4 mesh sieve. The fines should be non-plastic.
- No exposed soil should be left uncompacted and exposed to moisture. A smooth-drum vibratory roller, or equivalent, should roll the surface to seal out as much water as possible.
- In-place soil or fill soil that becomes wet and unstable and/or too wet to suitably compact should be removed and replaced with clean, granular soil (see gradation requirements above).
- Excavation and placement of structural fill material should be observed on a full-time basis by a geotechnical engineer (or representative) experienced in wet weather/wet condition earthwork to determine that all work is being accomplished in accordance with the project specifications and our recommendations.
- Grading and earthwork should not be accomplished during periods of heavy, continuous rainfall.

We recommend that the above requirements for wet weather/wet condition earthwork be incorporated into the contract specification.



#### LIMITATIONS

We have prepared this report for use by Three's Company, LLC, and other members of the design team, for use in the design of a portion of this project. The data used in preparing this report and this report should be provided to prospective contractors for their bidding or estimating purposes only. Our report, conclusions and interpretations are based on our subsurface explorations, data from others and limited site reconnaissance, and should not be construed as a warranty of the subsurface conditions.

Variations in subsurface conditions are possible between the explorations and may also occur with time. A contingency for unanticipated conditions should be included in the budget and schedule. Sufficient monitoring, testing and consultation should be provided by our firm during construction to confirm that the conditions encountered are consistent with those indicated by the explorations, to provide recommendations for design changes should the conditions revealed during the work differ from those anticipated, and to evaluate whether earthwork and foundation installation activities comply with contract plans and specifications.

The scope of our services does not include services related to environmental remediation and construction safety precautions. Our recommendations are not intended to direct the contractor's methods, techniques, sequences or procedures, except as specifically described in our report for consideration in design.

If there are any changes in the loads, grades, locations, configurations or type of facilities to be constructed, the conclusions and recommendations presented in this report may not be fully applicable. If such changes are made, we should be given the opportunity to review our recommendations and provide written modifications or verifications, as appropriate.





We have appreciated the opportunity to be of service to you on this project. If you have any questions or comments, please do not hesitate to call at your earliest convenience.

Respectfully submitted, GeoResources, LLC

Jordan L. Kovash, GIT Staff Geologist in Training



Dana C. Biggerstaff, PE Senior Geotechnical Engineer

JLK:DCB:EWH/jlk

Doc ID: ThreesCompanyLLC.15thAveNE.RG Attachments: Figure 1: Site Location Map Figure 2: Site & Exploration Map Figure 3: NRCS Soils Map Figure 4: Geologic Map Figure 5: Liquefaction Susceptibility Map Figure 6: Active Faults & Folds Map Figure 7: Typical Wall Drainage & Backfill Detail Appendix A - Subsurface Explorations Appendix B - Laboratory Test Results



Eric W. Heller, PE, LG Senior Geotechnical Engineer








### Approximate Site Location

Map created from Web Soil Survey (http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx)

| Soil<br>Type | Soil Name            | Parent Material                             | Slopes   | Erosion Hazard | Hydrologic<br>Soils Group |
|--------------|----------------------|---------------------------------------------|----------|----------------|---------------------------|
| 39           | Giles Silt Loam      | Volcanic ash and glacial outwash            | 3 to 15  | Slight         | В                         |
| 43           | Hoogdal silt loam    | Loess and glaciolacustrine deposits         | 15 to 30 | Moderate       | D                         |
| 48           | Indianola loamy sand | Sandy glacial outwash                       | 15 to 30 | Moderate       | А                         |
| 108          | Skipopa silt loam    | Volcanic ash over glaciolacustrine deposits | 3 to 15  | Slight         | D                         |





#### Not to Scale

### **NRCS Soils Map**

Proposed Residential Development 5224, 5228, 5216 – 15<sup>th</sup> Avenue NE Thurston County, Washington PN: 11809310-600, -700, & -100

Doc ID: ThreesCompanyLLC.15thAveNE.F

March 2020

Figure 3



### Approximate Site Location

An excerpt from *Geologic Map of the Lacey 7.5-minute Quadrangle, Thurston County, Washington* by Robert L. Logan, Timothy J. Walsh, Henry W. Schasse, and Michael Polenz (2003)

| Qf   | Fill                                   |
|------|----------------------------------------|
| Qp   | Peat                                   |
| Qgos | Vashon recessional sand and minor silt |





Not to Scale

### **Geologic Map**

Proposed Residential Development 5224, 5228, 5216 – 15<sup>th</sup> Avenue NE Thurston County, Washington PN: 11809310-600, -700, & -100

Doc ID: ThreesCompanyLLC.15thAveNE.F March 2020

Figure 4





Not to Scale

# GEORESOURCES earth science & geotechnical engineering 5007 Pacific Hwy E., Suite 16 | Fife, WA 98424 | 253.896.1011 | www.georesources.rocks

## WA DNR Active Faults & Folds Map

Proposed Residential Development 5224, 5228, 5216 – 15<sup>th</sup> Avenue NE Thurston County, Washington PN: 11809310-600, -700, & -100

Doc ID: ThreesCompanyLLC.15thAveNE.F

March 2020



- Washed pea gravel/crushed rock beneath floor slab could be hydraulically connected to perimeter/subdrain pipe. Use of 1" diameter weep holes as shown is one applicable method. Crushed gravel should consist of 3/4" minus. Washed pea gravel should consist of 3/8" to No. 8 standard sieve.
- Wall backfill should meet WSDOT Gravel Backfill for walls Specification 9-03-12(2).
- 3. Drainage sand and gravel backfill within 18" of wall should be compacted with hand-operated equipment. Heavy equipment should not be used for backfill, as such equipment operated near the wall could increase lateral earth pressures and possibly damage the wall. The table below presents the drainage sand and gravel gradation.
- 4. All wall back fill should be placed in layers not exceeding 4" loose thickness for light equipment and 8" for heavy equipment and should be densely compacted. Beneath paved or sidewalk areas, compact to at least 95% Modified Proctor maximum density (ASTM: 01557-70 Method C). In landscaping areas, compact to 90% minimum.
- 5. Drainage sand and gravel may be replaced with a geocomposite core sheet drain placed against the wall and connected to the subdrain pipe. The geocomposite core sheet should have a minimum transmissivity of 3.0 gallons/minute/foot when tested under a gradient of 1.0 according to ASTM 04716.

- 6. The subdrain should consist of 4" diameter (minimum), slotted or perforated plastic pipe meeting the requirements of AASHTO M 304; 1/8-inch maximum slot width; 3/16- to 3/8inch perforated pipe holes in the lower half of pipe, with lower third segment unperforated for water flow; tight joints; sloped at a minimum of 6"/100' to drain; cleanouts to be provided at regular intervals.
- Surround subdrain pipe with 8 inches (minimum) of washed pea gravel (2" below pipe" or 5/8" minus clean crushed gravel. Washed pea gravel to be graded from 3/8-inch to No.8 standard sieve.
- 8. See text for floor slab subgrade preparation.

| Drainage   | Sand and Gravel        | ¾" Minus Crushed Gravel |                        |  |  |  |  |  |  |
|------------|------------------------|-------------------------|------------------------|--|--|--|--|--|--|
| Sieve Size | % Passing by<br>Weight | Sieve Size              | % Passing by<br>Weight |  |  |  |  |  |  |
| 3⁄4″       | 100                    | 3⁄4″                    | 100                    |  |  |  |  |  |  |
| No 4       | 28 - 56                | 1/2″                    | 75 – 100               |  |  |  |  |  |  |
| No 8       | 20 - 50                | 1⁄4″                    | 0 – 25                 |  |  |  |  |  |  |
| No 50      | 3 - 12                 | No 100                  | 0 – 2                  |  |  |  |  |  |  |
| No 100     | 0 - 2                  | (by wet sieving)        | (non-plastic)          |  |  |  |  |  |  |

## GEORESOURCES earth science & geotechnical engineering 5007 Pacific Hwy E., Suite 16 | Fife, WA 98424 | 253.896.1011 | www.georesources.rocks

### **Typical Wall Drainage & Backfill Detail**

Proposed Residential Development 5224, 5228, 5216 – 15<sup>th</sup> Avenue NE Thurston County, Washington PN: 11809310-600, -700, & -100

Doc ID: ThreesCompanyLLC.15thAveNE.F

March 2020 Figure 7

**Appendix A** Subsurface Explorations

|                         | SOIL                                             | CLASSIFIC  | ATION S         | YSTEM                                     |
|-------------------------|--------------------------------------------------|------------|-----------------|-------------------------------------------|
| M                       | AJOR DIVISIONS                                   |            | GROUP<br>SYMBOL | GROUP NAME                                |
|                         | GRAVEL                                           | CLEAN      | GW              | WELL-GRADED GRAVEL, FINE TO COARSE GRAVEL |
|                         |                                                  | GRAVEL     | GP              | POORLY-GRADED GRAVEL                      |
| COARSE<br>GRAINED       | More than 50%                                    | GRAVEL     | GM              | SILTY GRAVEL                              |
| SOILS                   | Of Coarse Fraction<br>Retained on<br>No. 4 Sieve | WITH FINES | GC              | CLAYEY GRAVEL                             |
|                         | SAND                                             | CLEAN SAND | SW              | WELL-GRADED SAND, FINE TO COARSE SAND     |
| More than 50%           |                                                  |            | SP              | POORLY-GRADED SAND                        |
| No. 200 Sieve           | More than 50%                                    | SAND       | SM              | SILTY SAND                                |
|                         | Of Coarse Fraction<br>Passes<br>No. 4 Sieve      | WITH FINES | SC              | CLAYEY SAND                               |
|                         | SILT AND CLAY                                    | INORGANIC  | ML              | SILT                                      |
| FINE                    |                                                  |            | CL              | CLAY                                      |
| GRAINED<br>SOILS        | Liquid Limit<br>Less than 50                     | ORGANIC    | OL              | ORGANIC SILT, ORGANIC CLAY                |
|                         | SILT AND CLAY                                    | INORGANIC  | МН              | SILT OF HIGH PLASTICITY, ELASTIC SILT     |
| More than 50%           |                                                  |            | СН              | CLAY OF HIGH PLASTICITY, FAT CLAY         |
| Passes<br>No. 200 Sieve | Liquid Limit<br>50 or more                       | ORGANIC    | он              | ORGANIC CLAY, ORGANIC SILT                |
| н                       | GHLY ORGANIC SOILS                               |            | PT              | PEAT                                      |

#### NOTES:

- 1. Field classification is based on visual examination of soil in general accordance with ASTM D2488-90.
- 2. Soil classification using laboratory tests is based on ASTM D2487-90.
- Description of soil density or consistency are based on interpretation of blow count data, visual appearance of soils, and or test data.

#### SOIL MOISTURE MODIFIERS:

- Dry- Absence of moisture, dry to the touch
- Moist- Damp, but no visible water
- Wet- Visible free water or saturated, usually soil is obtained from below water table



### **Unified Soils Classification System**

Proposed Residential Development 5224, 5228, 5216 – 15<sup>th</sup> Avenue NE Thurston County, Washington PN: 11809310-600, -700, & -100

Doc ID: ThreesCompanyLLC.15thAveNE.F

March 2020

### **Test Pit TP-1**

### Location: East of existing residence

Approximate Elevation: 134'

| De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | epth     | (ft) | Soil Type | Soil Description      |                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-----------|-----------------------|--------------------------------------------------------------|
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        | 0.5  | -         | Dark brown topsoil    |                                                              |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        | 3.5  | SM        | Brown silty SAND (lo  | oose, moist) (Weathered recessional outwash)                 |
| 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        | 10.0 | SM        | Brown-grey poorly g   | graded SAND (loose, moist)(recessional outwash)              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | Terminated at 10 fe   | et below ground surface.                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | No iron oxide stainii | ng or mottling observed.                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | Major caving observ   | ed at approximately 3 feet below ground surface.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | No groundwater see    | epage observed at time of excavation.                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           |                       | Test Pit TP-2                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | Location:             | south of existing residence                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | Appro                 | oximate Elevation: 136'                                      |
| De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | epth     | (ft) | Soil Type | Soil Description      |                                                              |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        | 0.5  | -         | Dark brown topsoil    |                                                              |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        | 1.5  | ML        | Brown SILT with sar   | nd (medium stiff, moist) (Recessional lacustrine/slackwater) |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        | 7.5  | SP        | Brown-grey poorly     | graded SAND (loose) (Recessional outwash)                    |
| 7 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 12.0 |           | Brown-grey poorly     | graded SAND with some chunks of silty sand (loose, moist)    |
| 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        | 15.0 | 37-3101   | (Recessional outwa    | sh)                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | Terminated at 13 fe   | et below ground surface.                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | No iron oxide staini  | ng or mottling observed.                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | Major caving obser    | ved at approximately 4 feet below ground surface.            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | No groundwater se     | epage observed at time of excavation.                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           |                       | Test Pit TP-3                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | Location:             | West of existing residence                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | Appro                 | oximate Elevation: 132'                                      |
| De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | epth     | (ft) | Soil Type | Soil Description      |                                                              |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        | 1.0  | -         | Dark brown topsoil    |                                                              |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        | 3.0  | SM        | Brown silty SAND (l   | oose, moist) (Weathered recessional outwash)                 |
| 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        | 10.5 | SP        | Brown-grey poorly     | graded SAND (loose, moist) (Recessional outwash)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | Terminated at 10.5    | feet below ground surface.                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | No iron oxide staini  | ng or mottling observed.                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | Major caving observ   | ved at approximately 3.5 feet below ground surface.          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           | No groundwater se     | epage observed at time of excavation.                        |
| Logged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | by: I    | DC   |           |                       | Excavated on: December 31, 2019                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           |                       | Test Pit Logs                                                |
| personal p |          |      |           |                       | Proposed Residential Development                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |           |                       | 5224, 5228, 5216 – 15 <sup>th</sup> Avenue NF                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =^       | ١R١  | FSU       |                       | Thurston County Washington                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u> | ノハ   |           | UNCLU                 |                                                              |

Thurston County, Washington PN: 11809310-600, -700, & -100

earth science & geotechnical engineering 5007 Pacific Hwy E., Suite 16 | Fife, WA 98424 | 253.896.1011 | www.georesources.rocks

#### Doc ID: ThreesCompanyLLC.15thAveNE.F

March 2020

### Test Pit TP-4

## Location: SW corner of site Approximate Elevation: 136'

| Dooth (ft) | Soil Type | Soil Description                                                          |
|------------|-----------|---------------------------------------------------------------------------|
|            | Juli Type | Dark brown tonsoil                                                        |
| 0.0 - 0.8  | -<br>SM   | Brown silty SAND (loose moist) (Weathered recessional outwash)            |
| 25 - 100   | SP        | Brown-grey poorly graded SAND (loose moist) (recessional outwash)         |
| 2.5 10.0   | 51        | brown grey poorly graded starb (roose, moist) (recessional outwash)       |
|            |           | Terminated at 10 feet below ground surface.                               |
|            |           | No iron oxide staining or mottling observed.                              |
|            |           | Major caving observed at approximately 3 feet below ground surface.       |
|            |           | No groundwater seepage observed at time of excavation.                    |
|            |           | 5 1 5                                                                     |
|            |           | Test Pit TP-5                                                             |
|            |           | Location: Central portion of site, halfway down slope                     |
|            |           | Approximate Elevation: 102'                                               |
|            |           |                                                                           |
| Depth (ft) | Soil Type | Soil Description                                                          |
| 0.0 - 0.5  | -         | Dark brown topsoil                                                        |
| 0.5 - 8.5  | SP        | Brown-grey poorly graded SAND (loose to medium dense, moist) (Recessional |
|            |           | outwash)                                                                  |
|            |           | Terminated at 9.5 feat below ground surface                               |
|            |           | No iron oxido staining or mottling observed                               |
|            |           | Major caving observed at approximately 2 feet below groupd surface        |
|            |           | No groundwater seenage observed at time of excavation                     |
|            |           | No groundwater seepage observed at time of excavation.                    |
|            |           | Test Pit TP-6                                                             |
|            |           | Location: Western edge, central portion of site                           |
|            |           | Approximate Elevation: 92'                                                |
| Depth (ft) | Soil Type | Soil Description                                                          |
| 0.0 - 0.5  | -         | Dark brown topsoil                                                        |
| 0.5 - 3.0  | SM        | Brown-tan silty SAND (loose, moist) (Weathered recessional outwash)       |
| 3.0 - 10.5 | SP        | Brown-grey poorly graded SAND (loose to medium dense, moist) (Recessional |
|            |           | outwash)                                                                  |
|            |           |                                                                           |
|            |           | lerminated at 10.5 feet below ground surface.                             |
|            |           | NO IFOR OXIDE STAINING OF MOTTIING ODSERVED.                              |
|            |           | No groundwater soonage observed at time of everyotion                     |
|            |           | No groundwater seepage observed at time of excavation.                    |
|            |           |                                                                           |

Logged by: DC



Excavated on: December 31, 2019

### **Test Pit Logs**

Proposed Residential Development 5224, 5228, 5216 – 15<sup>th</sup> Avenue NE Thurston County, Washington PN: 11809310-600, -700, & -100

Doc ID: ThreesCompanyLLC.15thAveNE.F

### Test Pit TP-7

#### Location: NW corner of site Approximate Elevation: 84'

| Depth | n (ft) | Soil Type | Soil Description                                                                    |
|-------|--------|-----------|-------------------------------------------------------------------------------------|
| 0.0 - | 0.5    | -         | Dark brown topsoil                                                                  |
| 0.5 - | 9.0    | MH        | Tan-grey SILT (medium stiff, moist) (Recessional lacustrine deposits)               |
| 9.0 - | 11.0   | SP        | Brown-grey poorly graded SAND (medium dense, moist) (Recessional outwash)           |
|       |        |           |                                                                                     |
|       |        |           | Terminated at 11 feet below ground surface.                                         |
|       |        |           | No iron oxide staining or mottling observed.                                        |
|       |        |           | No caving observed at the time of excavation.                                       |
|       |        |           | No groundwater seepage observed at time of excavation.                              |
|       |        |           | Test Pit TP-8                                                                       |
|       |        |           | Location: North portion of site base of slope                                       |
|       |        |           | $\frac{1}{2}$                                                                       |
|       |        |           | Approximate Elevation. 74                                                           |
| Depth | n (ft) | Soil Type | Soil Description                                                                    |
| 0.0 - | 1.0    | -         | Dark brown topsoil                                                                  |
| 1.0 - | 3.5    | SM        | Brown-tan silty SAND (loose, moist) (Weathered recessional outwash)                 |
| 3.5 - | 12.0   | SP-SM     | Brown-grey poorly graded SAND with silt (loose to medium dense, moist) (Recessional |
|       |        |           | outwash)                                                                            |
|       |        |           |                                                                                     |
|       |        |           | Terminated at 12 feet below ground surface.                                         |
|       |        |           | Mottling/iron oxide staining observed at about 7 feet below ground surface.         |
|       |        |           | No caving observed at the time of excavation.                                       |
|       |        |           | No groundwater seepage observed at time of excavation.                              |
|       |        |           | Test Pit TP-9                                                                       |
|       |        |           | Location: West central portion of site                                              |
|       |        |           | Approximate Elevation: 78'                                                          |
| Depth | n (ft) | Soil Type | Soil Description                                                                    |
| 0.0 - | 0.1    | -         | Dark brown topsoil                                                                  |
| 0.1 - | 10.0   | SP        | Brown-grey poorly graded SAND (loose to medium dense, moist) (Recessional           |
|       |        |           | outwash)                                                                            |
|       |        |           |                                                                                     |
|       |        |           | Terminated at 10 feet below ground surface.                                         |
|       |        |           | No iron oxide staining or mottling observed.                                        |
|       |        |           | Major caving observed at approximately 5 feet below ground surface.                 |
|       |        |           | No groundwater seepage observed at time of excavation.                              |
|       |        |           |                                                                                     |
|       |        |           |                                                                                     |

Logged by: DC



Excavated on: December 31, 2019

### **Test Pit Logs**

Proposed Residential Development 5224, 5228, 5216 – 15<sup>th</sup> Avenue NE Thurston County, Washington PN: 11809310-600, -700, & -100

Doc ID: ThreesCompanyLLC.15thAveNE.F

| то                                        | TAL C                                                                                                                                           | <b>DEPTH:</b> 36.5                                                                                            | DRILLING METHOD:   |                 | HSA LOGGED BY: |        |                                        |                         |                               | JLK                       |                                       |                      |                 |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------|-----------------|----------------|--------|----------------------------------------|-------------------------|-------------------------------|---------------------------|---------------------------------------|----------------------|-----------------|
| TOP ELEVATION: 104                        |                                                                                                                                                 |                                                                                                               | DRILLING COMPAN    | Y:              |                | Bo     | retec 1, Inc                           |                         | HAMMER TYPE: cat head         |                           |                                       |                      |                 |
| LA                                        | TITUC                                                                                                                                           | DE:                                                                                                           | DRILL RIG:         | EC              | C 95           | Trac   | k Drill                                |                         | HAM                           | MER \                     | WEIGI                                 | HT: _                | 140 lbs         |
| LO                                        | NGITU                                                                                                                                           | JDE:                                                                                                          | NOTES:             |                 |                |        | NW p                                   | ortion of               | fsite                         |                           |                                       |                      |                 |
| Depth                                     | Elevation                                                                                                                                       | SOIL DESCRIPTION                                                                                              | DRILLING           | Sample          | Sampler        | Symbol | Plastic Lin<br>% Water (<br>% Fines (< | TEST R<br>Test I<br>nit | ESULT<br>Results<br>●<br>m) ◊ | r <b>s</b><br>Liquio      | d Limit                               | Blow<br>Count        | Ground<br>Water |
| 0-                                        |                                                                                                                                                 |                                                                                                               |                    |                 |                |        | Penetratio<br>10                       | n-▲<br>20 ;             | (blow<br>30 4                 | /s per fo<br>10 5         | oot)<br>0                             |                      |                 |
| 0-                                        |                                                                                                                                                 | Grey brown silty SAND/sandy SIL                                                                               | T (loose,          |                 |                |        |                                        |                         |                               |                           |                                       |                      |                 |
| -                                         | -                                                                                                                                               | Mottled tan sandy SILT, some gra<br>moist to wet) (Slackwater)                                                | vel (loose,        | 1               |                |        |                                        |                         |                               |                           | 99.1                                  | 3<br>5               |                 |
| 5 -                                       | - 100<br>-                                                                                                                                      | Crawbraum CAND (madium dana                                                                                   | - moiot)           | 2a              |                |        |                                        |                         |                               |                           | ·····                                 | 5<br>3<br>7          |                 |
| -                                         | -                                                                                                                                               | (Recessional Outwash)                                                                                         | e, moist)          | 2 <u>b</u><br>3 |                |        |                                        |                         |                               |                           | ·····                                 | 9<br>5               |                 |
| - 10 -                                    | - 95                                                                                                                                            |                                                                                                               |                    |                 |                |        |                                        | ····                    |                               |                           |                                       | 5<br>5               |                 |
| -                                         | -                                                                                                                                               |                                                                                                               |                    | 4               |                |        |                                        |                         |                               | ······                    | · · · · · · · · · · · · · · · · · · · | 7<br>7               |                 |
| -                                         | - 90                                                                                                                                            |                                                                                                               |                    |                 |                |        |                                        |                         |                               |                           |                                       |                      |                 |
| 15 -                                      | -                                                                                                                                               | Grey brown silty fine SAND (loose                                                                             | e, moist)          | 5a              |                |        | <b>.</b>                               |                         |                               |                           | 85.9                                  | 5<br>4               |                 |
| -                                         | -<br>                                                                                                                                           | Grey brown sandy SILT (medium<br>wet) (Slackwater) (ML)                                                       | stiff, moist to    | 5b              |                |        |                                        |                         |                               |                           |                                       | 2                    |                 |
| 20                                        | -                                                                                                                                               | Grey SAND (medium dense, mois<br>(Recessional Outwash)                                                        | t)                 | 6               |                |        |                                        |                         |                               |                           |                                       | 5<br>7<br>8          |                 |
| -<br>25 —<br>-                            | - 80                                                                                                                                            | Grey silty fine SAND (medium der wet)                                                                         | ise, moist to      | 7a<br>7b        |                |        | <b>.</b>                               |                         |                               |                           |                                       | 4<br>6<br>6          |                 |
| -<br>30 -                                 | - 75                                                                                                                                            | Mottled grey brown silty SAND sa<br>(medium stiff, moist to wet) (Slack                                       | ndy SILT<br>water) | 8               |                |        | ·····                                  |                         | •                             |                           |                                       | 1 2                  |                 |
| -                                         | _                                                                                                                                               |                                                                                                               | -                  |                 |                |        |                                        |                         |                               |                           |                                       | 4                    | ATD             |
| NO<br>1. R<br>2. U                        | NOTES<br>1. Refer to log key for definition of symbols, abbreviations and codes<br>2. USCS designation is based on visual manual classification |                                                                                                               |                    |                 |                |        | Pro<br>5                               | posed<br>224, 5<br>Oly  | Resid<br>228, 5<br>⁄mpia,     | lential<br>5216 N<br>Wasl | Deve<br>NE 15 <sup>-</sup><br>hingto  | elopm<br>th Av<br>on | ent<br>e        |
| ar<br>3. Gr<br>4. N.<br>5. A <sup>-</sup> | nd sele<br>roundv<br>.E. = N<br>TD = A                                                                                                          | ected lab testing<br>water level, if indicated, is for the date<br>lot Encountered<br>at the Time of Drilling | shown and may vary |                 |                |        | L                                      | og o                    | F BC                          | ORIN                      | GΒ                                    | -1                   |                 |
| J. A                                      |                                                                                                                                                 |                                                                                                               |                    |                 |                |        | JOB: Th                                | reesC                   | ompa                          | inyLL                     | <u>C.15</u> t                         | hAve                 | NE of 2         |
|                                           |                                                                                                                                                 |                                                                                                               |                    |                 |                | ſ      | GeoR                                   | esol                    | irce                          | s. L                      | LC                                    |                      | FIG.A-5         |

| <b>TOTAL DEPTH:</b> 36.5 |                  | DRILLING METHOD: |                           |                |          | HSA LOGGED |      |           |           | GED      | DBY: JLK           |                       |        |          |       |              |
|--------------------------|------------------|------------------|---------------------------|----------------|----------|------------|------|-----------|-----------|----------|--------------------|-----------------------|--------|----------|-------|--------------|
| TO                       |                  |                  |                           | DRILLING       | COMPANY: |            |      | Bo        | retec 1   | , Inc    |                    | HAMMER TYPE: cat head |        |          |       |              |
|                          |                  | )E:              |                           |                | :        | EC         | 295  | Trac      | k Drill   | Wasa     | tion of            | HAM                   | MER    | WEIG     | HT: _ | 140 lbs      |
|                          | VGIT             | JDE              |                           | NOTES.         |          |            |      |           |           | w por    |                    | Sile                  |        |          |       |              |
|                          |                  |                  |                           |                |          |            |      |           |           | 1        | Test F             | Results               | 5      |          | -     |              |
|                          | c                |                  |                           |                |          |            |      |           | Plasti    | ic Limit |                    |                       | Liau   | id Limit |       |              |
| pth                      | atio             |                  | SOIL DESCRIPTION          |                | DRILLING | nple       | nple | loqu      | % Wa      | ater Co  | ntent              | •                     | Liqu   |          | ow    | ound<br>ater |
| ă                        | Ele              |                  |                           |                | NOTES    | Sar        | Sar  | Syr       | % Fir     | nes (<0  | .075mı             | m) 💠                  |        |          | ΞÖ    | 9.8<br>Sig   |
|                          |                  |                  |                           |                |          |            |      |           | Dama      |          |                    | (h.l.a.)              |        | ( t)     | -     |              |
|                          |                  |                  |                           |                |          |            |      |           | Pene<br>1 | 10 2     | - <b>A</b><br>20 3 | 4000 v<br>2 08        | lo per | 50       |       |              |
| -                        | _                |                  |                           |                |          |            |      |           |           |          |                    |                       |        | :        |       |              |
| -                        | - 70             |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| 35 –                     | -                | Grev silty S     |                           | NOT)           |          |            |      |           |           |          |                    |                       |        |          | 4     |              |
| -                        | -                | (Recession       | al Outwash)               | wety           |          | 9          |      |           |           |          |                    |                       |        |          | 10    |              |
| -                        | _                |                  | Bottom of Boring          |                |          | 1          |      | anni 1111 | 1         |          |                    |                       |        | :        | '+    |              |
| -                        | -                |                  | Completed2/11/2020        |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| -                        | - 65             |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| 40 -                     | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| -                        | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        | :        |       |              |
| -                        | _                |                  |                           |                |          |            |      |           |           |          |                    |                       |        | :        |       |              |
| -                        | _                |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| -                        | - 60             |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| 45 -                     | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| -                        | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| -                        | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| -                        | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| -                        | - 55             |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| 50 -                     | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        | <u> </u> | -     |              |
| -                        | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| -                        | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| -                        | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| -                        | - 50             |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| 55 -                     | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| -                        | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| -                        | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        | :        |       |              |
| -                        | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        | :        |       |              |
| -                        | - 45             |                  |                           |                |          |            |      |           |           |          |                    |                       |        | :        |       |              |
| 60 -                     | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
| -                        | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        | :        |       |              |
| -                        | -                |                  |                           |                |          |            |      |           |           |          |                    |                       |        | : :      |       |              |
| -                        |                  |                  |                           |                |          |            |      |           |           |          |                    |                       |        | :        |       |              |
|                          | - 40             |                  |                           |                |          |            |      |           |           |          |                    |                       |        |          |       |              |
|                          |                  |                  |                           |                |          |            |      | lr        |           |          |                    |                       |        |          |       |              |
| NOT                      | TES              |                  |                           |                |          |            |      |           |           | Prop     | osed               | Resic                 | lentia | l Deve   | elopm | ent          |
| 1. R                     | efer to          | log key for c    | efinition of symbols, abb | reviations and | l codes  |            |      |           |           | 52       | 24, 52             | 228, 5                | 216    | NE 15    | th Av | е            |
| 2. U                     | SCS d            | lesignation is   | based on visual manual    | classification |          |            |      | ┝         |           |          | Oly                | mpia,                 | vvas   | mingto   | 11    |              |
| ar<br>3 C                | iu sele<br>mindu | vater level if   | indicated is for the date | shown and m    | av varv  |            |      |           |           |          |                    |                       |        |          |       |              |
| 4. N.                    | E. = N           | ot Encounter     | ed                        |                | ay vary  |            |      |           |           | LO       | GO                 | F BC                  | RIN    | IG B     | -1    |              |
| 5. A                     | ΓD = A           | t the Time of    | Drilling                  |                |          |            |      |           |           |          | -                  |                       |        |          |       |              |
|                          |                  |                  | -                         |                |          |            |      |           | JOB:      | Thr      | eesC               | ompa                  | nyLl   | _C.15    | hAve  | of 2         |
|                          |                  |                  |                           |                |          |            |      | ſ         | Ge        | oRe      | sol                | irce                  | s, L   | LC       | FI    | G. A-5       |

| <b>TOTAL DEPTH:</b> 51.5 |         |                | DRILLING METHOD:           |                |                  |                         |      | HSA LOGGED BY: JLK                |           |               |            |               |                       | LK          |         |             |
|--------------------------|---------|----------------|----------------------------|----------------|------------------|-------------------------|------|-----------------------------------|-----------|---------------|------------|---------------|-----------------------|-------------|---------|-------------|
| TOF                      | P ELE   | VATION:        | 135                        | DRILLING       | LING COMPANY: Bo |                         |      |                                   |           | pretec 1, Inc |            |               | HAMMER TYPE: cat head |             |         |             |
| LAT                      | ITUD    | E:             |                            | DRILL RIG      | :                | EC 95 Track Drill HAMME |      |                                   |           |               | MER        | WEIG          | HT: _                 | 140 lbs     |         |             |
| LO                       | IGITU   | IDE:           |                            | NOTES:         |                  |                         |      |                                   |           |               |            |               |                       |             |         |             |
|                          |         |                |                            |                |                  |                         |      |                                   |           | Т             | EST R      | ESULT         | ſS                    |             | -       |             |
|                          | _       |                |                            |                |                  |                         |      |                                   | Diant     | a 1 inait     | Iestr      | vesuits       | 1 :                   | al I (ma )4 |         |             |
| oth                      | atior   |                |                            |                | DRILLING         | ple                     | pler | lod                               | Wasu      | ater Co       | ntent      | •             | Liqui                 |             | n t     | und<br>iter |
| De                       | lev     |                | SOIL DESCRIPTION           |                | NOTES            | San                     | San  | Syn                               | % Fir     | nes (<0.      | 075mr      | n) 💠          |                       |             | S 🖻     | Gro<br>Va   |
|                          | _       |                |                            |                |                  |                         |      |                                   | -         |               |            |               |                       |             |         |             |
|                          |         |                |                            |                |                  |                         |      |                                   | Pene<br>1 | tration -     | • 🔺<br>0 3 | (blow<br>30 4 | /speri<br>10 t        | root)<br>50 |         |             |
| 0-                       | 135     | Dark brown     | to brown silty SAND (I     | oose, moist)   |                  |                         |      |                                   |           |               |            |               |                       |             |         |             |
| _                        |         | Tan to brow    | n silty SAND (loose, n     | noist)         |                  |                         |      |                                   |           |               |            |               |                       |             |         |             |
| _                        | -       | Tan to brow    | n SAND with silt (loose    | )<br>e moist)  |                  | 1                       |      | <u>,,,,,,</u>                     | ···· �/   | •             |            |               |                       |             | 4       |             |
| _                        | -       | (SP-SM) (R     | ecessional Outwash)        | , 110101)      |                  | ľ                       |      | 977.007<br>9558701<br>9507.63.0   |           |               |            |               |                       |             | 4       |             |
| _                        |         |                |                            |                |                  |                         |      | 034671<br>072.071                 |           |               |            |               |                       |             |         |             |
| 5-                       | - 130   | Grey brown     | SAND with silt (mediu      | m dense,       |                  | 2                       |      | 0.117 FJ.1                        |           |               |            |               |                       |             | 5       |             |
|                          | -       | moist)         |                            |                |                  |                         |      |                                   |           |               |            |               |                       |             | 7       |             |
|                          | -       | Grev to are    | y brown SAND with silt     | and siltier    |                  | 2                       |      |                                   | ····· 💠   | •             |            |               |                       |             | 6       |             |
|                          | -       | interbeds (I   | oose to medium dense       | , moist) (SP-  |                  |                         |      |                                   |           |               |            |               |                       |             | 5       |             |
|                          |         | SM)            |                            |                |                  |                         |      | 14211<br>17411<br>1411            |           |               |            |               |                       |             |         |             |
| 10 -                     | - 125   | (loose, mois   | st)                        |                |                  | 4                       |      | 1.1.1.1.1.1<br>1.1.1.1<br>1.1.1.1 |           |               |            |               |                       |             | 4       |             |
| _                        | -       |                |                            |                |                  |                         |      |                                   |           |               |            |               |                       |             | 4       |             |
|                          |         |                |                            |                |                  |                         |      |                                   |           |               |            |               |                       |             |         |             |
|                          | _       |                |                            |                |                  |                         |      | 777.UVI<br>1337.UVI               |           |               |            |               |                       |             |         |             |
| 45                       | 100     |                |                            |                |                  |                         |      | 9477774<br>9477777<br>947677      |           |               |            |               |                       |             |         |             |
| 15 -                     | - 120   | (medium de     | ense, moist)               |                |                  | 5                       |      |                                   |           |               |            |               |                       |             | 4<br>5  |             |
| _                        | -       |                |                            |                |                  |                         |      |                                   |           |               |            |               |                       |             | 6       |             |
|                          |         |                |                            |                |                  |                         |      | 1.1771.1<br>14.677                |           |               |            |               |                       |             |         |             |
|                          |         |                |                            |                |                  |                         |      |                                   |           |               |            |               |                       |             |         |             |
| 20_                      | _ 115   |                |                            |                |                  |                         |      | 1366<br>1370<br>1780 179          |           |               |            |               |                       |             |         |             |
| 20                       | - 115   | Grey brown     | SAND (medium dense         | e, moist)      |                  | 6b                      |      |                                   |           |               |            |               |                       |             | 7<br>10 |             |
|                          | _       | (SP)           |                            |                |                  | ба                      |      |                                   |           |               |            |               |                       |             | 10      |             |
| _                        | _       |                |                            |                |                  |                         |      |                                   |           |               |            |               |                       |             |         |             |
| _                        | _       |                |                            |                |                  |                         |      |                                   |           |               |            |               |                       |             |         |             |
| 25 -                     | - 110   |                |                            |                |                  |                         |      |                                   | <b>`_</b> |               |            |               |                       |             |         |             |
| 20                       |         |                |                            |                |                  | 7                       |      |                                   |           | <del>.</del>  |            |               |                       |             | 9       |             |
| -                        | -       |                |                            |                |                  |                         |      |                                   |           |               |            |               |                       |             | 10      |             |
|                          |         |                |                            |                |                  |                         |      |                                   |           |               |            |               |                       |             |         |             |
|                          | -       |                |                            |                |                  |                         |      |                                   |           |               |            |               |                       |             |         |             |
| 30 -                     | - 105   |                |                            |                |                  |                         |      |                                   |           |               | ····       |               |                       |             |         |             |
| -                        |         |                |                            |                |                  | 8                       |      |                                   |           |               |            |               |                       |             | 11      |             |
| -                        | -       |                |                            |                |                  |                         |      | N                                 |           |               |            |               |                       |             | 14      |             |
|                          |         |                |                            |                |                  |                         |      |                                   |           |               |            |               |                       |             | 1       |             |
| NOT                      | ES      |                |                            |                |                  |                         |      |                                   |           | Propo         | osed       | Resid         | lentia                | l Deve      | elopm   | ent         |
| 1. R                     | efer to | log key for d  | efinition of symbols, abb  | reviations and | l codes          |                         |      |                                   |           | 522           | 24, 52     | 228, 5        | 216                   | NE 15       | th Av   | e           |
| 2. U                     | SCS d   | esignation is  | based on visual manual     | classification |                  |                         |      | L                                 |           |               | Oly        | mpia,         | Was                   | hingto      | n       |             |
| an                       | d seleo | cted lab testi | ng                         |                |                  |                         |      |                                   |           |               |            |               |                       |             |         |             |
| 3. Gr                    | oundw   | ater level, if | indicated, is for the date | shown and m    | ay vary          |                         |      |                                   |           | 10            |            |               | יייסי                 |             | • •     |             |
| 4. N.                    | E. = N( | ot Encounter   | ed<br>Drilling             |                |                  |                         |      |                                   |           | LO            | 90         | JF DURING D-2 |                       |             |         |             |
| ່ ວ. AI                  | א = D   |                |                            |                |                  |                         |      |                                   | JOB:      | Thre          | esC        | ompa          | nvLl                  | .C.15       | hAve    | NE of 2     |
|                          |         |                |                            |                |                  |                         |      | F                                 | Ge        | oRe           | SOL        | irce          | s I                   |             |         | FIG A-6     |
|                          |         |                |                            |                |                  |                         |      |                                   |           | 2110          | 200        |               | <u>, </u>             |             | 1       | 1 10.4-0    |

| <b>TOTAL DEPTH:</b> 51.5              |                                                                                             |                                                                                                    | DRILLING METHOD:      |        |         | HSA LOGGED BY: JLK |                                                                 |                                             |                                  |                      |                 |  |
|---------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------|--------|---------|--------------------|-----------------------------------------------------------------|---------------------------------------------|----------------------------------|----------------------|-----------------|--|
| то                                    | P ELE                                                                                       | <b>EVATION:</b> 135                                                                                | DRILLING COMPANY      | :      |         | Bo                 | retec 1, Inc                                                    |                                             | HAMMER TYPE: cat head            |                      |                 |  |
|                                       |                                                                                             | )E:                                                                                                |                       | EC     | 295     | Trac               | k Drill                                                         |                                             | R WEIGI                          | HT: _                | 140 lbs         |  |
| LO                                    | NGIT                                                                                        | JDE:                                                                                               |                       |        | 1       | 1                  |                                                                 |                                             |                                  | 1                    |                 |  |
| Depth                                 | Elevation                                                                                   | SOIL DESCRIPTION                                                                                   | DRILLING<br>NOTES     | Sample | Sampler | Symbol             | TES<br>Te<br>Plastic Limit ⊢<br>% Water Conte<br>% Fines (<0.07 | T RESULTS<br>ist Results<br>int ●<br>5mm) ◇ | quid Limit                       | Blow<br>Count        | Ground<br>Water |  |
|                                       |                                                                                             |                                                                                                    |                       |        |         |                    | Penetration -<br>10 20                                          | ▲ (blows p<br>30 40                         | er foot)<br>50                   |                      |                 |  |
| -<br>35 -                             | - 100                                                                                       | (dense, moist)                                                                                     |                       | 9      |         |                    |                                                                 | <br>▲                                       |                                  | 10<br>14             |                 |  |
| -                                     | -                                                                                           |                                                                                                    |                       |        |         |                    |                                                                 |                                             |                                  | 17                   |                 |  |
| - 40<br>-<br>-<br>-                   | 90<br>-<br>-                                                                                | (medium dense, moist)                                                                              |                       | 10     |         |                    |                                                                 |                                             |                                  | 7<br>11<br>14        |                 |  |
| 45                                    | - 90<br>-<br>-                                                                              | (dense, moist)<br>Grey brown line SAND (dense, m                                                   | oist) (SP)            | 11     | a<br>b  |                    |                                                                 |                                             |                                  | 9<br>16<br>15        |                 |  |
| 50 -                                  | - 85                                                                                        | Grey brown SAND (medium dens                                                                       | e, moist)             | 12     | 2       |                    | •                                                               |                                             | ·····                            | 9                    |                 |  |
|                                       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | (SP)<br>Bottom of Boring<br>Completed2/11/2020                                                     |                       |        |         |                    |                                                                 |                                             |                                  | 10<br>10             |                 |  |
| NO <sup>-</sup><br>1. R<br>2. U<br>ar | TES<br>tefer to<br>ISCS d                                                                   | log key for definition of symbols, abb<br>lesignation is based on visual manua<br>cted lab testing | previations and codes |        |         |                    | Propos<br>5224                                                  | ed Residen<br>, 5228, 521<br>Olympia, W     | tial Deve<br>6 NE 15<br>ashingto | elopm<br>th Av<br>on | ent             |  |
| 3. G<br>4. N<br>5. A <sup>.</sup>     | roundw<br>.E. = N<br>TD = A                                                                 | vater level, if indicated, is for the date<br>lot Encountered<br>t the Time of Drilling            | shown and may vary    |        |         |                    | LOG                                                             |                                             |                                  | -2<br>:hAve          | NE of 2         |  |
|                                       |                                                                                             |                                                                                                    |                       |        |         | _ ŀ                | GeoRes                                                          | ources,                                     | LLC                              | FI                   | G. A-6          |  |

## Appendix B

Laboratory Results



Tested By: \_\_\_\_





Tested By: \_\_\_\_







Tested By: \_\_\_\_





Tested By: \_\_\_\_









## WETLAND AND STREAM REPORT WILLIAMS CROSSING PROJECT

### **Thurston County, Washington**

Applicant:

Sage Homes NW, LLC c/o Ryan Kohlmann 9505 19<sup>th</sup> Avenue SE, Suite 118, Everett, WA 98208

SHNW0000-0002

Prepared by:

Senior Scientist, PWS

**DAVID EVANS AND ASSOCIATES, INC.** 14432 SE Eastgate Way, Suite 400 Bellevue, WA 98007

September 2023



### **EXECUTIVE SUMMARY**

At the request of Sage Homes NW, LLC (applicant), David Evans and Associates, Inc. (DEA) conducted a wetland and stream delineation for the proposed Williams Crossing residential plat development (project) located at 5216, 5224, and 5228 NE 15<sup>th</sup> Avenue, Olympia, WA. The applicant proposes to construct a private residential development on three separate parcels:

- Parcel 11809310100, 5126 NE 15<sup>th</sup> Ave, Olympia, WA 98516
- Parcel 11809310600, 5224 NE 15<sup>th</sup> Ave, Olympia, WA 98516
- Parcel 11809310700, 5228 NE 15<sup>th</sup> Ave, Olympia, WA 98516

Each parcel will support 13 or 14 separate single family dwellings, for a total of 41 structures, plus access roads, utilities, stormwater treatment areas, and amenities.

DEA's delineation confirmed the presence of two wetland units (Wetland A and B) that had been previously delineated by Agua Tierra in 2019. The wetland units are connected just offsite to the north of the property. Portions of the boundaries of both wetlands were changed by DEA. Wetlands were rated using the Washington State Department of Ecology (Ecology) rating system for Western Washington. Based on this system, the wetland units were rated together as a Category III wetland. No streams were identified on the property. The wetland was rated with a habitat score of 7, which results in a standard wetland buffer of 260 feet under Thurston County (County) Code and a buffer width of 110 feet under Lacey Municipal Code. The proposed project avoids all direct impacts to the wetlands or their buffers.

### **TABLE OF CONTENTS**

| 1.0 | Introduction                                     | 1  |
|-----|--------------------------------------------------|----|
|     | 1.1 Report Limitations                           | 1  |
| 2.0 | Methodology                                      |    |
|     | 2.1 Preliminary Research                         | 3  |
|     | 2.2 Field Investigation                          |    |
|     | 2.3 Wetland Regulatory Requirements              | 4  |
| 3.0 | Results                                          | 9  |
|     | 3.1 Project Soils                                | 9  |
|     | 3.2 WDFW Priority Habitat and Species (PHS) Data | 9  |
|     | 3.3 WDNR National Heritage Program (nHP) Data    |    |
|     | 3.4 Wetlands                                     |    |
|     | 3.5 Streams                                      | 16 |
| 4.0 | Impacts                                          | 16 |
| 5.0 | Mitigation                                       |    |
| 6.0 | References                                       |    |

### LIST OF FIGURES

| Figure 1. Project Vicinity Map                                  | 2  |
|-----------------------------------------------------------------|----|
| Figure 2. Soils in the Project Vicinity                         | 10 |
| Figure 3. National Wetland Inventory                            | 12 |
| Figure 4. Delineated Wetlands and Streams within the Study Area | 14 |
| Figure 5. Wetland Information Summary                           | 15 |

### LIST OF TABLES

| Table 1. Thurston County Standard Wetland Buffer Widths* | 6  |
|----------------------------------------------------------|----|
| Table 2. City of Lacey Wetland Buffer Table*             | 8  |
| Table 3. City of Lacey Wetland Buffer Table*             | 8  |
| Table 4. Wetland Survey Summary                          | 13 |
|                                                          |    |

### APPENDICES

Appendix A Wetland Data Sheets

Appendix B Wetland Rating Forms

Appendix C Photographs

Appendix D Project Site Plan

### **Acronyms and Abbreviations**

| CARP    | Critical Area Review Permit                      |
|---------|--------------------------------------------------|
| City    | City of Lacey                                    |
| County  | Thurston County                                  |
| DEA     | David Evans and Associates, Inc.                 |
| DOI     | U.S. Department of the Interior                  |
| Ecology | Washington State Department of Ecology           |
| GIS     | Geographic Information System                    |
| HGM     | Hydrogeomorphic                                  |
| LMC     | Lacey Municipal Code                             |
| NHP     | Natural Heritage Program                         |
| NRCS    | Natural Resource Conservation Service            |
| NWI     | National Wetlands Inventory                      |
| PFO     | Palustrine Forested                              |
| PHS     | Priority Habitats and Species                    |
| TCC     | Thurston County Code                             |
| TPA     | Tree protection area                             |
| USACE   | U.S. Army Corps of Engineers                     |
| USDA    | U.S. Department of Agriculture                   |
| USFWS   | U.S. Fish and Wildlife Service                   |
| WDFW    | Washington State Department of Fish and Wildlife |
| WDNR    | Washington State Department of Natural Resources |
| WRIA    | Water Resource Inventory Area                    |

### **1.0 INTRODUCTION**

The applicant (Sage Homes Northwest) proposes to construct a private residential development on three separate lots in Thurston County, northeast of Olympia, Washington (**Figure 1**, Vicinity Map). Parcels involved with the development are as follows:

- Parcel 11809310100, 5126 NE 15<sup>th</sup> Ave, Olympia, WA 98516
- Parcel 11809310600, 5224 NE 15<sup>th</sup> Ave, Olympia, WA 98516
- Parcel 11809310700, 5228 NE 15th Ave, Olympia, WA 98516

Each parcel will support 13 or 14 separate single family dwellings, for a total of 41 structures, plus access roads, utilities, stormwater treatment areas, and amenities. As shown in **Figure 1**, Vicinity Map, the project is located in Section 09 of Township 18 North Range 1 West. The parcels are located within Thurston County and plan to connect with City of Lacey (City) utility.

The project vicinity is generally characterized by second growth coniferous forest with a mix of low density rural and high density urban developments. Located north of Lacey between Olympia and the rapidly developing Hawks Prairie area, the project is bordered on the north by City of Lacey park property. The local topography slopes north/northeast toward the Woodland Creek drainage.

### 1.1 **REPORT LIMITATIONS**

This report is intended to update the previously submitted wetland report for the Williams Crossing project (Agua Tierra 2019) and allow the applicant to complete their Critical Area Review Permit (CARP) application process. This report and its author, Gray Rand, meet the submittal requirements for streams and wetlands as described in the existing critical area ordinance for the County. Mr. Rand is a Professional Wetland Scientist certified by the Society of Wetland Scientists and has more than 20 years of experience with wetlands and local critical areas in Puget Sound.

The wetland boundaries described herein are the professional opinion of David Evans and Associates, Inc. (DEA) staff based on the circumstances and site conditions at the time of this study. Local, state, and federal jurisdictions make final determinations of jurisdictional boundaries.

#### Figure 1. Project Vicinity Map



CONSIGNERT ALL COMPLETED AND RETERATIONS. AND REPORTED FOR A PROVIDE AND RECORD AND A DESCRIPTION OF A DESCRIPT

Ratings Figures\THRE0001

### 2.0 METHODOLOGY

### 2.1 PRELIMINARY RESEARCH

Published information about local critical areas was reviewed for evidence of wetlands and streams located in the project vicinity. Information reviewed included, but was not limited to, the following:

- National Wetland Inventory (NWI) data access through the U.S. Fish and Wildlife Service (USFWS) NWI data portal. U.S. Department of the Interior (DOI) April 2021.
- Natural Resource Conservation Service (NRCS) Web Soil Survey website, accessed April 2021 (NRCS 2019).
- Washington State Department of Fish and Wildlife (WDFW) Priority Habitats and Species (PHS) Online Mapper, accessed April 2021. Olympia, Washington (WDFW 2019a). http://wdfw.wa.gov/mapping/phs/
- Washington State Department of Fish and Wildlife (WDFW) Salmonscape Online Mapper. Accessed April 2021. Olympia, Washington (WDFW 2019b). http://apps.wdfw.wa.gov/salmonscape/map.html
- A Catalog of Washington Streams and Salmon Utilization, Volume 1, Puget Sound Region. Washington Department of Fisheries (Williams et al. 1975).
- Washington State Department of Natural Resources (WDNR) Natural Heritage Program (NHP) data (accessed 2019): WA Wetlands of High Conservation Value Map Viewer. Available at: <u>https://wadnr.maps.arcgis.com/apps/webappviewer/index.html?id=5cf9e5b22f584ad7a4e2a</u> <u>ebc63c47bda</u>
- Thurston County GeoData Center, Show Me Everything Map. Accessed April 2021. https://map.co.thurston.wa.us/Html5Viewer/Index.html?viewer=uMap.Main
- Wetland Delineation and Buffer Rating Report for Three's Company (Agua Tierra Land and Water Services, 2019)

### 2.2 FIELD INVESTIGATION

An on-site investigation of the project study area was conducted on April 14, 2021. The studied area includes sections of the following Thurston County parcels:

- 11809310600
- 11809310700
- 11809310100

In addition, offsite wetland and stream conditions were visually assessed on May 28, 2021 on a parcel to the north owned by the City of Lacey (Parcel #11809240400).

Wetlands and streams were delineated and mapped according to state and federal laws. Wetland resources were delineated using guidelines and methods described in the U.S. Army Corps of Engineers (USACE) Wetland Delineation Manual (Environmental Laboratory 1987) as amended

with the Regional Supplement to the Corps of Engineers Wetlands Delineation Manual: Western Mountains, Valleys and Coast Region (Regional Supplement) (USACE 2010).

In general, the wetland delineation consisted of three main tasks: (1) assessing vegetation, soil, and hydrologic characteristics to identify areas meeting wetland criteria; (2) evaluating constructed drainage features to determine whether they would be regulated as jurisdictional wetlands, streams, or ditches: and (3) marking wetland boundaries. Wetland boundaries were identified in the field by a DEA biologist and surveyed in the field by MTN2COAST, LLC Surveying.

Biologists used several tools to identify and classify plants and soils examined within the study area, and to conduct a rainfall analysis in accordance with the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valley, and Coast Region (USACE 2010). Plant indicator status and scientific plant names were identified using the National Wetland Plant List (Lichvar et al. 2016). Soil characteristics were recorded and classified using methods prescribed by the Natural Resources Conservation Service (NRCS) Field Book for Describing and Sampling Soils (NRCS 2012). Hydric soil conditions were assessed using Field Indicators of Hydric Soils in the United States, Version 8.1 (NRCS 2018). Vegetation, soil, and hydrology information was recorded in the field on wetland data forms and are provided in **Appendix A**. Weather during the delineation was drier than normal, as shown in the results of the Corps Antecedent Precipitation Tool, also included in **Appendix A**.

Wetlands delineated within the study area were classified according to the United States Fish and Wildlife (USFWS) Cowardin classification system (Cowardin et al. 1979), Ecology's Western Washington Wetland Rating System (Hruby 2014), and the hydrogeomorphic approach (HGM) (Brinson 1993).

No streams or ditches were delineated on the subject property. Wetland buffers were determined in the study area based on the habitat score of the wetlands according to the Washington State Wetland Rating System for Western Washington (Ecology 2014), Table 24.30-1 of the Thurston County Code (TCC), and Table 14T-19 of the Lacey Municipal Code (LMC).

### 2.3 WETLAND REGULATORY REQUIREMENTS

Due to the project's parcels being located within Thurston County, but planning to connect with City of Lacey utilities, both jurisdictions' codes were considered for the purposes for this critical areas report.

Thurston County Code (TCC 24.03.010) defines a wetland as:

"Wetland" or "wetlands" means areas that are inundated or saturated by surface water or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions, and other areas meeting the definition of wetland under RCW 36.70A.030, as amended. Wetlands generally include swamps, marshes, bogs, and similar areas. Wetlands do not include those artificial wetlands intentionally created from non-wetland sites, including, but not limited to, irrigation and drainage ditches, grass-lined swales, canals, detention facilities, wastewater treatment facilities, farm ponds, and landscape amenities, or those wetlands created after July 1, 1990, that were unintentionally created as a result of the construction of a road, street, or highway. Wetlands may
include those artificial wetlands intentionally created from non-wetland areas in order to mitigate conversion of natural wetlands. Areas below the ordinary high water mark (OHWM) of a water body, including but not limited to marine waters, lakes, ponds, streams, and rivers, may also qualify as wetlands if they meet the criteria of the 1987 U.S. Army Corps of Engineers Wetlands Delineation Manual and the 2008 Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region.

TCC 24.30.030 describes the how the County requires wetlands to be rated according to the Washington State Wetland Rating System for Western Washington (Hruby 2014), which classifies wetlands as Category I through IV, based on functional score and unique characteristics. Standard wetland buffer widths in Thurston County are outlined in TCC 24.30.045 and are based primarily on how well a wetland performs (scores) habitat and water quality functions. Specific buffer widths are described in Table 24.30-1 of the TCC, which is summarized in **Table 1** below.

## Table 1. Thurston County Standard Wetland Buffer Widths\*

| The Larger of the Buffers for Habitat and Water Quality Applies                                                                                                                                                                                                                       |         |       |       |       |       |       |       |       |       |       |       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| BUFFER TO PROTECT HABITAT                                                                                                                                                                                                                                                             |         |       |       |       |       |       |       |       |       |       |       |  |
| Rating for habitat from Hruby (2014)                                                                                                                                                                                                                                                  | L,L,L   | L,L,L | M,L,L | M,M,L | H,L,L | M,M,M | H,M,L | H,M,M | H,H,L | H,H,M | H,H,H |  |
| Buffer width for habitat for all wetlands<br>except estuarine wetlands and coastal<br>lagoons                                                                                                                                                                                         | 100'    | 120'  | 140'  | 160'  | 180'  | 200'  | 220'  | 240'  | 260'  | 280'  | 300'  |  |
| Buffer width with mitigation under 24.30.050 TCC                                                                                                                                                                                                                                      | 100'    | 100'  | 105'  | 120'  | 135'  | 150'  | 165'  | 180'  | 195'  | 210'  | 225'  |  |
| Buffer width for estuarine wetlands and lagoons     220 feet                                                                                                                                                                                                                          |         |       |       |       |       |       |       |       |       |       |       |  |
| Buffer to Maintain Water Quality                                                                                                                                                                                                                                                      |         |       |       |       |       |       |       |       |       |       |       |  |
| Wetlands of high conservation value, bogs,<br>and wetlands containing sensitive plant<br>species documented by the DNR Natural<br>Heritage Program.                                                                                                                                   | 250 fee | et    |       |       |       |       |       |       |       |       |       |  |
| Wetlands that rate 3 for habitat, score 7 or<br>less for water quality, are less than 10,000<br>square feet in size and are not a functional<br>part of a mosaic wetland, do not support<br>priority wildlife species, and do not drain to<br>a stream or a Category I or II wetland. | 50 feet |       |       |       |       |       |       |       |       |       |       |  |

\*Table 24.30-1 of the TCC.

The County did raise the issue of tree protection within their March 11, 2020 letter. Pursuant to TCC 24.30.065, trees within wetland buffers with driplines that extend beyond the upland edge (furthest from the wetland) of buffers with a wildlife habitat rating of five points or more under the Wetland Rating System for Western Washington shall be protected as follows:

- A. A tree protection area extending a minimum of five feet beyond the dripline of trees twelve inches or greater in diameter (at four and one-half feet above the ground) and stands of trees shall be established and protected from disturbance during site development.
- B. Tree protection areas shall be identified on all applicable site development and construction drawings submitted to the County.
- C. Temporary fencing at least thirty inches tall shall be erected along the perimeter of the tree protection areas prior to the initiation of any clearing or grading. The fencing shall be posted with signage clearly identifying the tree protection area as a no entry area. If the tree protection area spans more than 0.25 miles, the perimeter of the protection area may be staked and flagged rather than fenced. The fencing or stakes shall remain in place throughout site development.
- D. Clearing, grading, filling or other development activities are prohibited within the tree protection area.
- E. Vehicle travel, parking and storage of construction materials and fuel are prohibited in tree protection areas.
- F. The County may authorize use of alternate tree protection techniques that provide an equal or greater level of protection.

The City of Lacey Municipal Code (LMC 14.28.030) defines a wetland as:

"Wetlands" are those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas. Wetlands do not include those artificial wetlands intentionally created from non-wetland sites, including, but not limited to, irrigation and drainage ditches, grass lined swales, canals, detention facilities, wastewater treatment facilities, farm ponds, and landscape amenities, or those wetlands created after July 1, 1990, that were unintentionally created as a result of construction of a road, street, or highway. Wetlands may include those artificial wetlands intentionally created from non-wetland areas to mitigate the conversion of wetlands. For identifying and delineating a regulated wetland, local government shall use the approved federal wetland delineation manual and applicable regional supplements.

LMC Chapter 14.28 describes the City of Lacey (City) measures of wetlands protection. The City also requires wetlands to be rated according to the Washington State Wetland Rating System for Western Washington (Hruby 2014). Standard wetland buffer widths in the City are outlined in LMC 14.28.280 and are determined primarily by habitat function scores. Specific buffer widths are described in Table 14T-19 and Table 14T-69 of the LMC, which are summarized in **Table 2** and **Table 3** below.

| Wetland Category                                      | Buffer Wid | Buffer Width (in feet) Based on Habitat Score |              |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------|------------|-----------------------------------------------|--------------|--|--|--|--|--|--|--|--|--|--|
| and Type                                              | 3-5 (Low)  | 67 (Medium)                                   | 89 (High)    |  |  |  |  |  |  |  |  |  |  |
| I: Estuarine and<br>Coastal Lagoons                   | 150 (buffe | r width not based on hab                      | itat scores) |  |  |  |  |  |  |  |  |  |  |
| I: Bogs and Wetlands<br>of High Conservation<br>Value | 19         | 90                                            | 225          |  |  |  |  |  |  |  |  |  |  |
| I: All Others                                         | 75         | 110                                           | 225          |  |  |  |  |  |  |  |  |  |  |
| II: Estuarine and<br>Coastal Lagoons                  | 110 (buffe | r width not based on hab                      | itat scores) |  |  |  |  |  |  |  |  |  |  |
| II: All                                               | 75         | 110                                           | 225          |  |  |  |  |  |  |  |  |  |  |
| III: All                                              | 60         | 110                                           | 225          |  |  |  |  |  |  |  |  |  |  |
| IV: All                                               |            | 40                                            |              |  |  |  |  |  |  |  |  |  |  |

## Table 2. City of Lacey Wetland Buffer Table\*

\*Table 14T-19 of the LMC.

Table 14T-69. The following wetland buffer requirements if habitat corridor is not provided per subsection (C)(1) of this section or minimization measures per subsection (C)(2)(b) of this section are not implemented:

| Wetland Category                                      | Buffer Wid | Buffer Width (in feet) Based on Habitat Score |              |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------|------------|-----------------------------------------------|--------------|--|--|--|--|--|--|--|--|--|--|
| and Type                                              | 3-5 (Low)  | 67 (Medium)                                   | 89 (High)    |  |  |  |  |  |  |  |  |  |  |
| I: Estuarine and<br>Coastal Lagoons                   | 200 (buffe | r width not based on hab                      | itat scores) |  |  |  |  |  |  |  |  |  |  |
| I: Bogs and Wetlands<br>of High Conservation<br>Value | 25         | 300                                           |              |  |  |  |  |  |  |  |  |  |  |
| I: All Others                                         | 100        | 150                                           | 300          |  |  |  |  |  |  |  |  |  |  |
| II: Estuarine and<br>Coastal Lagoons                  | 150 (buffe | r width not based on hab                      | itat scores) |  |  |  |  |  |  |  |  |  |  |
| II: All                                               | 100        | 150                                           | 300          |  |  |  |  |  |  |  |  |  |  |
| III: All                                              | 80         | 150                                           | 300          |  |  |  |  |  |  |  |  |  |  |
| IV: All                                               |            | 50                                            |              |  |  |  |  |  |  |  |  |  |  |

## Table 3. City of Lacey Wetland Buffer Table\*

\*Table 14T-69 of the LMC.

Additional portions of the TCC critical areas code and of the LMC wetlands protection code address criteria for reducing or increasing buffer width. The applicant is not proposing to reduce the standard buffer width, nor are there conditions present that would require increased wetland buffer width per TCC 24.30.055 or LMC 14.28.290 (e.g., steep slopes and/or inadequate vegetative cover).

## 3.0 **RESULTS**

## 3.1 PROJECT SOILS

Soils in the study area are dominated by Giles silt loam, Skipopa silt loam, Hoogdal silt loam, and Indianola loamy sand as indicated on the Soils Map (**Figure 2**) (NRCS 2021). None of these soil series are considered hydric (NRCS 2021). Indianola series is a somewhat excessively drained material that was formed in sandy glacial outwash. Skipopa series soils are somewhat poorly drained soils formed in volcanic ash over glaciolacustrine deposits.

## 3.2 WDFW PRIORITY HABITAT AND SPECIES (PHS) DATA

The WDFW PHS program provides comprehensive information on important fish, wildlife, and habitat resources to local governments, state and federal agencies, private landowners, and consultants, and tribal biologists for land use planning purposes. A review of WDFW PHS online database identified no documented occurrences of PHS on the property in question. The entire township covering the property is identified as having one or more records for big brown bat, little brown bat, and Yuma myotis (WDFW 2021b). Woodland Creek, approximately <sup>1</sup>/<sub>4</sub> mile northeast of the property, is identified in the database as supporting a variety of priority fish species, including steelhead trout (*Oncorhynchus mykiss*), coho salmon (*O. kisutch*), cutthroat trout (*O. clarki*), chum salmon (*O. keta*), and Chinook salmon (*O. tshawytscha*). (WDFW 2021b).



## Figure 2. Soils in the Project Vicinity



## 3.3 WDNR NATIONAL HERITAGE PROGRAM (NHP) DATA

A review of the WDNR Wetlands of High Conservation Value Map Viewer did not reveal any wetlands in the study area (WDNR 2021a).

## 3.4 WETLANDS

## **National Wetland Inventory**

A review of the NWI online interactive map revealed one feature on the property, which was a riverine wetland associated with a tributary to Woodland Creek (DOI 2021). The NWI map is shown in **Figure 3**.

## **Figure 3. National Wetland Inventory**



P-IT/THREp00000010600IWFDIGS/Maps/Wethand Ratings Figures/THRE0001-USFWS NWI.mxd=4/29/2021

## Wetland Field Survey Results

DEA confirmed the two previously delineated wetland units within the study area. **Table 4.** Wetland Survey Summary

provides a summary of the wetlands and their characteristics. The location of the delineated wetlands are depicted in **Figure 4.** Wetland data sheets are contained within **Appendix A.** The wetland rating form(s) are provided in **Appendix B.** The two delineated wetland units are connected approximately 150 feet offsite to the north. Based on this information, the wetland units were rated together as one wetland, including the offsite portions. More specific information about each wetland unit is included in the summary sheets in **Figure 5**. **Appendix C** includes photographs of the wetlands and streams in the study area.

| Wetland | HGM Class    | Cowardin<br>Class | Ecology<br>Rating | Total<br>Score | Water<br>Quality | Hydrology | Habitat | TCC<br>Standard<br>Local<br>Buffer (ft) | LMC<br>Standard<br>Local<br>Buffer (ft) |
|---------|--------------|-------------------|-------------------|----------------|------------------|-----------|---------|-----------------------------------------|-----------------------------------------|
| A/B     | Depressional | PFO               | III               | 18             | 7                | 4         | 7       | 260                                     | 110                                     |

## Table 4. Wetland Survey Summary



LMC Wetland Buffer (110 ft) TCC Wetland Buffer (260 ft)

Figure 4. Delineated Wetlands and Streams within the Study Area

Wetland and Stream Delineation Report Williams Crossing Project

| WETLAND A/B – INFORMATION SUMMARY   |                                                               |                                                     |                               |                      |  |  |  |  |  |  |  |  |
|-------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|-------------------------------|----------------------|--|--|--|--|--|--|--|--|
| Location: Williams Crossing         |                                                               | (Lat. 47.298291° N                                  | Long122.589703°               | W).                  |  |  |  |  |  |  |  |  |
|                                     |                                                               |                                                     |                               |                      |  |  |  |  |  |  |  |  |
|                                     | man and the second second                                     |                                                     |                               |                      |  |  |  |  |  |  |  |  |
| Wetland A looking north fro         | om north property boundary                                    | Wetland B looki                                     | ng north from near ce         | nter of wetland      |  |  |  |  |  |  |  |  |
| WRIA / HUC                          | WRIA 15- Deschutes /HUC                                       | 2 #171100190502 Woodla                              | and Creek-Frontal Her         | nderson Watershed    |  |  |  |  |  |  |  |  |
| Western WA<br>Ecology Rating        |                                                               | III                                                 |                               |                      |  |  |  |  |  |  |  |  |
| Wetland Size (acre)                 | Onsite = (Wetland A unit) 0                                   | .1 acre;/ (Wetland B unit)<br>acres                 | 0.84  acre; Offsite = $6$     | estimated total 3.7  |  |  |  |  |  |  |  |  |
| Cowardin Classifications            |                                                               | PFO                                                 |                               |                      |  |  |  |  |  |  |  |  |
| HGM Classification                  |                                                               | Depressional                                        | l                             |                      |  |  |  |  |  |  |  |  |
| Wetland Data Sheet(s)               |                                                               | A-DP-1; B-DP-1 and                                  | B-DP-3                        |                      |  |  |  |  |  |  |  |  |
| Upland Data Sheet(s)                |                                                               | A-DP-2; B-DP-2 and                                  | B-DP-4                        |                      |  |  |  |  |  |  |  |  |
| Dominant Vegetation                 | Red alder, western red cedar                                  | , salmonberry, lady fern                            |                               |                      |  |  |  |  |  |  |  |  |
| Soils                               | Soil Survey data: Indianola l<br>Field data: Depleted Below l | oamy sand and Skipopa s<br>Dark Surface (A11) and S | silt loam<br>Sandy Redox (S5) |                      |  |  |  |  |  |  |  |  |
| Hydrology                           | Assumed Source: Precipitati<br>Field Data: Saturation (A3) a  | on, groundwater, and adj<br>and Geomorphic Position | acent area runoff.<br>(D2)    |                      |  |  |  |  |  |  |  |  |
|                                     | Wetland Fur                                                   | nctions Summary                                     |                               |                      |  |  |  |  |  |  |  |  |
| Function                            | Water Quality                                                 | Hydrologic                                          | Habitat                       |                      |  |  |  |  |  |  |  |  |
|                                     | Circle the a                                                  | ppropriate ratings                                  |                               |                      |  |  |  |  |  |  |  |  |
| Site Potential                      | HML                                                           | H M L                                               | н м Ц                         |                      |  |  |  |  |  |  |  |  |
| Landscape Potential                 | H M L                                                         | н м Г                                               | H M L                         |                      |  |  |  |  |  |  |  |  |
| Value                               | H M L                                                         | н м Ц                                               | H M L                         | TOTAL                |  |  |  |  |  |  |  |  |
| Score Based on Ratings              | 7                                                             | 4                                                   | 7                             | 18                   |  |  |  |  |  |  |  |  |
|                                     | General Descrip                                               | otion and Comments                                  |                               |                      |  |  |  |  |  |  |  |  |
| Wetland is a large depressional for | prested system with a robust sl                               | hrub and herbaceous und                             | erstory. The wetland u        | nits combine offsite |  |  |  |  |  |  |  |  |

**Figure 5. Wetland Information Summary** 

Wetland is a large depressional forested system with a robust shrub and herbaceous understory. The wetland units combine offsite and continue to the north. A small seasonal stream channel begins to appear in the wetland approximately 400 feet north of the property boundary. This stream channel appears intermittently between large areas of inundated wetland on the offsite property. While the wetland forested vegetation is dominated by younger deciduous forest, some mature forest is present in the buffer on the property.

## 3.5 STREAMS

No streams were identified on the property. While the NWI map does display a riparian feature that starts on the property, DEA did not locate any defined stream channel that demonstrated any evidence of scour, bed, or bank features on the property, within either wetland unit, or immediately offsite. Based on visual reconnaissance of the property to the north, a small seasonal stream channel begins to appear in the wetland approximately 400 feet north of the property boundary. This stream channel appears intermittently between large areas of inundated wetland on the offsite property. The observed sections of channel average two feet wide and have a barely defined bed and bank, with minimal signs of scour and flow.

## 4.0 IMPACTS

The project, as proposed, will not result in any direct impacts to streams or wetlands or their buffers. The site plan proposed as part of the ongoing land use application (**Appendix D**) has not changed and remains a minimum of 280 feet away from either Wetland A or B. This is outside of the LMC buffer of 110 feet based off of DEA's habitat rating, as well as outside of the TCC buffer of 260 feet based on the same rating. Due to the small 20-foot difference of the TCC buffer width to the proposed site plan, potential impacts of Wetland A and B are explored below with considerations of additional sections of the TCC.

According to TCC 24.30.065, a tree protection area (TPA) extending a minimum of five feet beyond the dripline of trees at least 12 inches in diameter that are within the wetland buffer must be identified on the site plans. The current TCC standard wetland buffer on the site, based on DEA's habitat rating, is 260 feet. Based on measurements in the field, DEA observed driplines of larger trees in the TCC wetland buffer averaging 10-25 feet in width, with the widest approximately 30 feet. At the locations closest to proposed development (Buildings 11, 36, and 37), observed driplines were a maximum of 10-20 feet wide (10 feet in proximity to Buildings 36 and 37 and 20 feet in proximity to Building 11). The current site plan in **Appendix D** identifies a TPA varying between 15 and 35 feet wide, based on the dripline widths observed in the field.

Stormwater from the proposed project will be treated by infiltration to groundwater, thus having no surface runoff affects to either wetland unit. The project proposes a combination of infiltration technologies, including collection and tightlining to galleries and porous surfaces collected in infiltration trenches. Therefore, no untreated water will impact wetlands and streams from the proposed project.

## 5.0 MITIGATION

Mitigation actions typically taken by an applicant or property owner are usually required by code to occur in the following sequence:

- 1. Avoiding the impact altogether by not taking a certain action or parts of actions;
- 2. Minimizing impacts by limiting the degree or magnitude of the action and its implementation; by using appropriate technology; or by taking affirmative steps, such as project redesign, relocation, or timing, to avoid or reduce impacts;
- 3. Rectifying the impact to the critical area by repairing, rehabilitating, or restoring the affected environment to the conditions existing at the time of the initiation of the project;

- 4. Reducing or eliminating the impact over time by preservation and maintenance operations during the life of the action; and/or
- 5. Compensating for the impact by replacing or providing substitute resources or environments.

As currently designed, the proposed project has no permanent or temporary impacts to streams, wetlands or their buffers. Stormwater impacts are also avoided by maximizing use of infiltration for water quality treatment. Therefore, all impacts have been avoided.

## 6.0 **REFERENCES**

- Brimson. 1993. A Hydrogeomorphic Classification for Wetlands. Wetland Research Program Technical Report WRP-DE-4. US Army Corps of Engineers, Washington DC.
- Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. *Classification of Wetlands and Deepwater Habitats of the United States*. Office of Biological Services, Fish and Wildlife Service, U.S. Department of the Interior, FWS/OBS-79/31.
- Environmental Laboratory. 1987. *Corps of Engineers Wetland Delineation Manual*. Technical Report Y-87-1, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi.
- Hruby, T. 2014. Washington State Wetland Rating System for Western Washington: 2014 Update. Washington State Department of Ecology (Publication #14-06-029). Olympia, WA: Washington Department of Ecology.
- Lichvar, R.W. 2012. The National Wetland Plant List. ERC/CRREL TR-12-11. Hanover, NH. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory. Available at <u>http://acwc.sdp.sirsi.net/client/search/asses:asset?t:ac=\$N/1012381</u>.
- Natural Resources Conservation Service (NRCS). 2001. Web Soil Survey (WSS). Accessed June 2019. <u>http://websoilsurvey.nrcs.usda.gov/app/</u>.
- National Oceanographic and Atmospheric Administration (NOAA). 2016. Status of ESA Listings and Critical Habitat Designations for West Coast Salmon and Steelhead. NOAA Fisheries.
- Pierce County, 2015. Public GIS Mapper. Accessed July 2019. http://matterhorn3.co.pierce.wa.us/publicgis/
- U.S. Army Corps of Engineers (Corps). 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), ed. J.S. Wakeley, R.W. Lichvar, and C.V. Noble. ERDC/EL TR-10-3. Vicksburg, Mississippi: U.S. Army Engineer Research and Development Center.
- U.S. Department of Agriculture (USDA). 2012. Field Book for Describing and Sampling Soils. National Soil Survey Center, Natural Resources Conservation Service, US Department of Agriculture.

 2015. Natural Resources Conservation Service (NRCS) Field Indicators of Hydric Soils in the United States, A Guide for Identifying and Delineating Hydric Soils, Version 8.2, 2018. Natural Resources Conservation Service, US Department of Agriculture.

- U.S. Department of the Interior (DOI). 2015. National Wetlands Inventory (NWI) data. NWI web mapper, U.S. Fish and Wildlife Service (USFWS). Accessed 2019. http://www.fws.gov/wetlands/Data/Mapper.html
- U.S. Fish and Wildlife Service (USFWS). 2015. Information for Planning and Conservation (IPaC). Harbor Hills Extension IPaC Trust Resource Report. Generated September 22, 2019. Lacey, Washington.

- Washington State Department of Fish and Wildlife (WDFW 2019a) Priority Habitats and Species (PHS) Online Mapper. Accessed October, 2019. Olympia, Washington. http://wdfw.wa.gov/mapping/phs/
- Washington State Department of Fish and Wildlife (WDFW 2019b) Salmonscape Online Mapper. Accessed October, 2019. Olympia, Washington http://apps.wdfw.wa.gov/salmonscape/map.html
- Washington State Department of Natural Resources (WDNR). 2019a. Natural Heritage Program data: *Sections that Contain Natural Heritage Features Associated with Wetlands*. Accessed Octorber 2019. <u>http://www1.dnr.wa.gov/nhp/refdesk/datasearch/wnhpwetlands.pdf</u>
- Washington State Department of Natural Resources (WDNR). 2019b. Forest Practices Application Mapping Tool. Accessed Octorber 2019. <u>https://fpamt.dnr.wa.gov/default.aspx#</u>
- Williams, R.W., R.M Laramie, and J.J. Ames. 1975. A Catalog of Washington Streams and Salmon Utilization, Volume 1, Puget Sound Region. Washington Department of Fisheries.

## **APPENDICES**

## Appendix A Wetland Data Sheets

This page intentionally left blank.

## WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

| Project Site:            | Williams     | Crossi      | ng                 |            |                  | С          | ity/County: | Lace     | ey/Thu       | <u>rston</u>       | Sampling D        | Date:  | <u>04/</u>  | 14/202   | 21 |
|--------------------------|--------------|-------------|--------------------|------------|------------------|------------|-------------|----------|--------------|--------------------|-------------------|--------|-------------|----------|----|
| Applicant/Owner:         | Three's C    | Compa       | ny                 |            |                  |            |             |          |              | State: WA          | Sampling F        | oint:  | <u>A-D</u>  | P-1      |    |
| Investigator(s):         | R. Pratt C   | ). G. R     | land               |            |                  |            |             | S        | ection,      | Township, Rang     | ge: <u>S09T18</u> | BNR1W  |             |          |    |
| Landform (hillslope, ter | rrace, etc.) | ): <u>v</u> | alley bottom       |            |                  | Local reli | ef (concave | e, conve | ex, non      | e): <u>concave</u> |                   | Slo    | be (%):     | <u>1</u> |    |
| Subregion (LRR):         | <u>A</u>     |             |                    | Lat        | : <u>47.0612</u> |            |             | Long:    | <u>-122.</u> | <u>8142</u>        |                   | Datum: | WGS8        | <u>4</u> |    |
| Soil Map Unit Name:      | Indianol     | la Loar     | ny Sand            |            |                  |            |             |          |              | NWI class          | sification:       | PFO    |             |          |    |
| Are climatic / hydrologi | c conditio   | ns on t     | he site typical fo | or this ti | me of year?      | Yes        | $\boxtimes$ | No       |              | (If no, explain in | n Remarks.)       |        |             |          |    |
| Are Vegetation $\Box$ ,  | Soil         | □,          | or Hydrology       | □,         | significantly d  | isturbed?  | Are "No     | rmal Ci  | rcumst       | ances" present?    |                   | Yes    | $\boxtimes$ | No       |    |
| Are Vegetation $\Box$ ,  | Soil         | □,          | or Hydrology       | □,         | naturally prob   | lematic?   | (If need    | ed, exp  | lain an      | y answers in Re    | marks.)           |        |             |          |    |

#### SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present? | Yes | $\boxtimes$ | No |                                          |     |             |    |  |
|---------------------------------|-----|-------------|----|------------------------------------------|-----|-------------|----|--|
| Hydric Soil Present?            | Yes | $\boxtimes$ | No | Is the Sampled Area<br>within a Wetland? | Yes | $\boxtimes$ | No |  |
| Wetland Hydrology Present?      | Yes | $\boxtimes$ | No |                                          |     |             |    |  |
| Remarks:                        |     |             |    |                                          |     |             |    |  |

| VEGETATION – Use scientific names of plant   | S                   |                      |                     |                                                                                                                               |           |
|----------------------------------------------|---------------------|----------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------|
| Tree Stratum (Plot size:)                    | Absolute<br>% Cover | Dominant<br>Species? | Indicator<br>Status | Dominance Test Worksheet:                                                                                                     |           |
| 1. western red cedar (Thuja plicata)         | <u>45</u>           | ves                  | FAC                 | Number of Dominant Species                                                                                                    | (A)       |
| 2. <u>red alder (Alnus rubra)</u>            | <u>35</u>           | <u>ves</u>           | FAC                 | That Are OBL, FACW, or FAC:                                                                                                   | (A)       |
| 3.                                           | ·                   |                      |                     | Total Number of Dominant 5                                                                                                    | (B)       |
| 4.                                           |                     |                      |                     | Species Across All Strata:                                                                                                    | (-)       |
| 50% = 40, 20% = 16                           | <u>80</u>           | = Total Cove         | r                   | Percent of Dominant Species 100                                                                                               | (A/B)     |
| Sapling/Shrub Stratum (Plot size:)           |                     |                      |                     | That Are OBL, FACW, or FAC:                                                                                                   |           |
| 1. salmonberry (Rubus spectabilis)           | <u>10</u>           | <u>ves</u>           | FAC                 | Prevalence Index worksheet:                                                                                                   |           |
| 2.                                           | <u> </u>            |                      | <u> </u>            | Total % Cover of: Multiply b                                                                                                  | <u>v:</u> |
| 3                                            | <u> </u>            |                      | <u> </u>            | OBL species x1 =                                                                                                              |           |
| 4                                            |                     |                      | ·                   | FACW species x2 =                                                                                                             |           |
| 5                                            | <u> </u>            |                      | <u> </u>            | FAC species x3 =                                                                                                              |           |
| 50% = <u>5</u> , 20% = <u>2</u>              | <u>10</u>           | = Total Cove         | r                   | FACU species x4 =                                                                                                             |           |
| Herb Stratum (Plot size:)                    |                     |                      |                     | UPL species x5 =                                                                                                              |           |
| 1. Pacific waterleaf (Hydrophyllum tenuipes) | <u>40</u>           | ves                  | FAC                 | Column Totals:(A)                                                                                                             | (B)       |
| 2. common ladyfern (Athyrium cyclosorum)     | <u>10</u>           | <u>ves</u>           | FAC                 | Prevalence Index = B/A =                                                                                                      |           |
| 3                                            |                     |                      |                     | Hydrophytic Vegetation Indicators:                                                                                            |           |
| 4                                            |                     |                      |                     | 1 – Rapid Test for Hydrophytic Vegetation                                                                                     |           |
| 5                                            |                     |                      |                     | 2 - Dominance Test is >50%                                                                                                    |           |
| 6                                            | <u> </u>            |                      |                     | $\Box$ 3 - Prevalence Index is $\leq 3.0^1$                                                                                   |           |
| 7                                            |                     |                      |                     | <ul> <li>4 - Morphological Adaptations<sup>1</sup> (Provide supporting<br/>data in Remarks or on a separate sheet)</li> </ul> | g         |
| 9.                                           |                     |                      |                     | 5 - Wetland Non-Vascular Plants <sup>1</sup>                                                                                  |           |
| 10                                           |                     |                      |                     | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)                                                                     |           |
| 11                                           |                     |                      |                     |                                                                                                                               |           |
| 50% = <u>25</u> , 20% = <u>10</u>            | <u>50</u>           | = Total Cove         | r                   | <sup>1</sup> Indicators of hydric soil and wetland hydrology must                                                             |           |
| Woody Vine Stratum (Plot size:)              |                     |                      |                     | be present, unless disturbed of problematic.                                                                                  |           |
| 1                                            |                     |                      |                     |                                                                                                                               |           |
| 2.                                           |                     |                      |                     | Hydrophytic                                                                                                                   |           |
| 50% =, 20% =                                 |                     | = Total Cove         | r                   | Vegetation Yes 🖾 I                                                                                                            | No 🗆      |
| % Bare Ground in Herb Stratum                |                     |                      |                     |                                                                                                                               |           |
| Remarks:                                     |                     |                      |                     |                                                                                                                               |           |

#### Project Site: Williams Crossing

#### SOIL

| SOI       | L           |                     |              |                |           |             |                     |                        |                   |                    | Sa         | mpling I | Point: <u>A-D</u> | P-1         |                     |  |
|-----------|-------------|---------------------|--------------|----------------|-----------|-------------|---------------------|------------------------|-------------------|--------------------|------------|----------|-------------------|-------------|---------------------|--|
| Prof      | ile Descr   | iption: (Describe t | o the depth  | n needed to d  | ocument t | he indicat  | or or confi         | irm the absen          | ce of             | f indicato         | ors.)      |          |                   |             |                     |  |
| D         | epth        | Matrix              |              |                |           | Redox Fea   | itures              |                        |                   |                    |            |          |                   |             |                     |  |
| (incł     | nes)        | Color (moist)       | %            | Color (mo      | oist)     | %           | Type <sup>1</sup>   | Loc <sup>2</sup>       |                   | Texture            |            |          |                   | Remarks     | 6                   |  |
|           | 0-8         | <u>10YR 2/1</u>     | 100          |                |           |             |                     |                        |                   | <u>clay loa</u>    | <u>m</u>   |          |                   |             |                     |  |
| 8         | <u>3-15</u> | <u>10YR4/2</u>      | <u>90</u>    | <u>10YR5/3</u> | <u>3</u>  | <u>10</u>   |                     |                        |                   | <u>silty cla</u>   | <u>y</u> r | edox     |                   |             |                     |  |
| _         |             |                     |              |                | -         |             |                     |                        |                   |                    |            |          |                   |             |                     |  |
| _         |             |                     |              |                | -         |             |                     |                        |                   |                    | -          |          |                   |             |                     |  |
| _         |             |                     |              |                | -         |             |                     |                        |                   |                    | · -        |          |                   |             |                     |  |
| _         |             |                     |              |                | -         |             |                     |                        |                   |                    | · -        |          |                   |             |                     |  |
| _         |             |                     |              |                | -         |             |                     |                        |                   |                    |            |          |                   |             |                     |  |
| _         |             |                     |              |                | -         |             |                     |                        |                   |                    |            |          |                   |             |                     |  |
| ¹Тур      | e: C= Co    | ncentration, D=Dep  | letion, RM=  | Reduced Matr   | ix, CS=Co | vered or Co | bated Sand          | I Grains. <sup>2</sup> | <sup>2</sup> Loca | ation: PL=         | Pore Li    | ning, M  | =Matrix           |             |                     |  |
| Hydı      | ric Soil Ir | dicators: (Applica  | ble to all L | RRs, unless o  | otherwise | noted.)     |                     |                        |                   | Indic              | ators f    | or Prob  | lematic H         | Hydric S    | oils <sup>3</sup> : |  |
|           | Histoso     | (A1)                |              |                | Sandy R   | edox (S5)   |                     |                        |                   |                    | 2 cm       | Muck (   | A10)              |             |                     |  |
|           | Histic E    | pipedon (A2)        |              |                | Stripped  | Matrix (S6  | )                   |                        |                   |                    | Red        | Parent I | Material (        | ΓF2)        |                     |  |
|           | Black H     | istic (A3)          |              |                | Loamy N   | lucky Mine  | ral (F1) <b>(ex</b> | cept MLRA 1)           | )                 |                    | Very       | Shallov  | v Dark Su         | rface (TI   | -12)                |  |
|           | Hydroge     | en Sulfide (A4)     |              |                | Loamy G   | leyed Matr  | ix (F2)             |                        |                   |                    | Othe       | r (Expla | in in Rem         | arks)       |                     |  |
| $\bowtie$ | Deplete     | d Below Dark Surfa  | ce (A11)     |                | Depleted  | Matrix (F3  | 5)                  |                        |                   |                    |            |          |                   |             |                     |  |
|           | Thick D     | ark Surface (A12)   |              |                | Redox D   | ark Surface | e (F6)              |                        |                   |                    |            |          |                   |             |                     |  |
|           | Sandy M     | Aucky Mineral (S1)  |              |                | Depleted  | Dark Surfa  | ace (F7)            |                        |                   | <sup>3</sup> Indic | cators o   | f hydrop | ohytic veg        | etation a   | and                 |  |
|           | Sandy C     | Gleyed Matrix (S4)  |              |                | Redox D   | epressions  | (F8)                |                        |                   | ur                 | nless di   | sturbed  | or proble         | matic.      | ι,                  |  |
| Rest      | rictive L   | ayer (if present):  |              |                |           |             |                     |                        |                   |                    |            |          |                   |             |                     |  |
| Туре      | e:          |                     |              |                |           |             |                     |                        |                   |                    |            |          |                   |             |                     |  |
| Dept      | h (inches   | ):                  |              |                |           |             |                     | Hydric Soils           | s Pres            | sent?              |            |          | Yes               | $\boxtimes$ | No                  |  |
| Rem       | arks:       |                     |              |                |           |             |                     |                        |                   |                    |            |          |                   |             |                     |  |
|           |             |                     |              |                |           |             |                     |                        |                   |                    |            |          |                   |             |                     |  |
|           |             |                     |              |                |           |             |                     |                        |                   |                    |            |          |                   |             |                     |  |
|           |             |                     |              |                |           |             |                     |                        |                   |                    |            |          |                   |             |                     |  |

#### HYDROLOGY

| Wetl            | and Hydrology Indicat                                             | ors:       |          |          |          |                          |                         |        |                                |                                           |             |     |    |  |  |  |  |
|-----------------|-------------------------------------------------------------------|------------|----------|----------|----------|--------------------------|-------------------------|--------|--------------------------------|-------------------------------------------|-------------|-----|----|--|--|--|--|
| Prima           | ary Indicators (minimum                                           | of one re  | equired  | ; check  | all that | apply)                   |                         |        | Sec                            | ondary Indicators (2 or n                 | nore requir | ed) |    |  |  |  |  |
|                 | Surface Water (A1)                                                |            |          |          |          | Water-Stained Leave      | es (B9)                 |        |                                | Water-Stained Leaves                      | s (B9)      |     |    |  |  |  |  |
|                 | High Water Table (A2)                                             | )          |          |          |          | (except MLRA 1, 2, 4     | 4A, and 4B)             |        |                                | (MLRA 1, 2, 4A, and 4                     | 4B)         |     |    |  |  |  |  |
| $\boxtimes$     | Saturation (A3)                                                   |            |          |          |          | Salt Crust (B11)         |                         |        | $\boxtimes$                    | Drainage Patterns (B1                     | 0)          |     |    |  |  |  |  |
|                 | Water Marks (B1)                                                  |            |          |          |          |                          |                         |        |                                | Dry-Season Water Table (C2)               |             |     |    |  |  |  |  |
|                 | Sediment Deposits (B2)                                            |            |          |          |          |                          |                         |        |                                | Saturation Visible on Aerial Imagery (C9) |             |     |    |  |  |  |  |
|                 | Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) |            |          |          |          |                          |                         |        |                                | Geomorphic Position (                     | (D2)        |     |    |  |  |  |  |
|                 | Algal Mat or Crust (B4                                            | -)         |          |          |          | Presence of Reduced      | d Iron (C4)             |        |                                | Shallow Aquitard (D3)                     |             |     |    |  |  |  |  |
|                 | Iron Deposits (B5)                                                |            |          |          |          | Recent Iron Reductio     | n in Tilled Soils (C6)  |        |                                | FAC-Neutral Test (D5)                     | )           |     |    |  |  |  |  |
|                 | Surface Soil Cracks (E                                            | 36)        |          |          |          | Stunted or Stresses F    | Plants (D1) (LRR A)     |        | Raised Ant Mounds (D6) (LRR A) |                                           |             |     |    |  |  |  |  |
|                 | Inundation Visible on A                                           | Aerial Ima | agery (E | 37)      |          | Other (Explain in Ren    | marks)                  |        |                                | Frost-Heave Hummoc                        | :ks (D7)    |     |    |  |  |  |  |
|                 | Sparsely Vegetated C                                              | oncave S   | Surface  | (B8)     |          |                          |                         |        |                                |                                           |             |     |    |  |  |  |  |
| Field           | Observations:                                                     |            |          |          |          |                          |                         |        |                                |                                           |             |     |    |  |  |  |  |
| Surfa           | ce Water Present?                                                 | Yes        |          | No       |          | Depth (inches):          |                         |        |                                |                                           |             |     |    |  |  |  |  |
| Wate            | r Table Present?                                                  | Yes        |          | No       |          | Depth (inches):          |                         |        |                                |                                           |             |     |    |  |  |  |  |
| Satur<br>(inclu | ation Present?<br>des capillary fringe)                           | Yes        |          | No       |          | Depth (inches):          | <u>12</u>               | Wetlar | nd Hy                          | drology Present?                          | Yes         |     | No |  |  |  |  |
| Desc            | ribe Recorded Data (str                                           | eam gau    | ge, mor  | nitoring | well, a  | erial photos, previous i | nspections), if availat | ole:   |                                |                                           |             |     |    |  |  |  |  |
|                 |                                                                   |            |          |          |          |                          |                         |        |                                |                                           |             |     |    |  |  |  |  |
| Rem             | arks:                                                             |            |          |          |          |                          |                         |        |                                |                                           |             |     |    |  |  |  |  |
|                 |                                                                   |            |          |          |          |                          |                         |        |                                |                                           |             |     |    |  |  |  |  |
|                 |                                                                   |            |          |          |          |                          |                         |        |                                |                                           |             |     |    |  |  |  |  |
|                 |                                                                   |            |          |          |          |                          |                         |        |                                |                                           |             |     |    |  |  |  |  |

## WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

| Project Site:            | Williams    | Crossi      | ng                   |            |                  | С          | ity/County: | Lace     | ey/Thur | <u>ston</u>        | Sampling D        | Date:  | <u>04/</u>  | 14/202    | 21 |
|--------------------------|-------------|-------------|----------------------|------------|------------------|------------|-------------|----------|---------|--------------------|-------------------|--------|-------------|-----------|----|
| Applicant/Owner:         | Three's C   | Compa       | ny                   |            |                  |            |             |          |         | State: WA          | Sampling F        | oint:  | <u>A-D</u>  | P-2       |    |
| Investigator(s):         | R. Pratt C  | ). G. R     | Rand                 |            |                  |            |             | S        | ection, | Township, Rang     | ge: <u>S09T18</u> | BNR1W  |             |           |    |
| Landform (hillslope, ter | race, etc.) | ): <u>F</u> | lillslope            |            |                  | Local reli | ef (concave | e, conve | ex, non | e): <u>concave</u> |                   | Slop   | e (%):      | <u>2</u>  |    |
| Subregion (LRR):         | <u>A</u>    |             |                      | Lat        | 47.0612          |            |             | Long:    | -122.8  | <u>3142</u>        |                   | Datum: | WGS8        | <u>84</u> |    |
| Soil Map Unit Name:      | Indianol    | la Loar     | my Sand              |            |                  |            |             |          |         | NWI class          | sification:       | upland |             |           |    |
| Are climatic / hydrologi | c conditio  | ns on t     | the site typical for | or this ti | me of year?      | Yes        | $\boxtimes$ | No       |         | (If no, explain in | n Remarks.)       |        |             |           |    |
| Are Vegetation           | Soil        | □,          | or Hydrology         | □,         | significantly di | isturbed?  | Are "No     | rmal Ci  | rcumst  | ances" present?    |                   | Yes    | $\boxtimes$ | No        |    |
| Are Vegetation $\Box$ ,  | Soil        | □,          | or Hydrology         | □,         | naturally prob   | lematic?   | (If need    | ed, exp  | lain an | y answers in Re    | marks.)           |        |             |           |    |

#### SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present? | Yes | $\boxtimes$ | No |             |                                          |     |    |             |
|---------------------------------|-----|-------------|----|-------------|------------------------------------------|-----|----|-------------|
| Hydric Soil Present?            | Yes |             | No | $\boxtimes$ | Is the Sampled Area<br>within a Wetland? | Yes | No | $\boxtimes$ |
| Wetland Hydrology Present?      | Yes |             | No | $\boxtimes$ |                                          |     |    |             |
| Remarks:                        |     |             |    |             |                                          |     |    |             |

| VEGETATION – Use scientific names of plant | s                          |                      |                            |                                                                |       |
|--------------------------------------------|----------------------------|----------------------|----------------------------|----------------------------------------------------------------|-------|
| Tree Stratum (Plot size:)                  | Absolute<br><u>% Cover</u> | Dominant<br>Species? | Indicator<br><u>Status</u> | Dominance Test Worksheet:                                      |       |
| 1. western red cedar (Thuja plicata)       | <u>60</u>                  | ves                  | FAC                        | Number of Dominant Species                                     | (4)   |
| 2. <u>red alder (Alnus rubra)</u>          | <u>15</u>                  | yes                  | FAC                        | That Are OBL, FACW, or FAC: 4                                  | (A)   |
| 3.                                         |                            |                      |                            | Total Number of Dominant                                       | (B)   |
| 4.                                         |                            |                      |                            | Species Across All Strata:                                     | (6)   |
| 50% = <u>37.5,</u> 20% = <u>15</u>         | <u>75</u>                  | = Total Cove         | r                          | Percent of Dominant Species 80                                 | (A/B) |
| Sapling/Shrub Stratum (Plot size:)         |                            |                      |                            | That Are OBL, FACW, or FAC:                                    | (АВ)  |
| 1. salmonberry (Rubus spectabilis)         | <u>30</u>                  | <u>yes</u>           | FAC                        | Prevalence Index worksheet:                                    |       |
| 2.                                         |                            |                      |                            | Total % Cover of: Multiply by:                                 |       |
| 3                                          |                            |                      |                            | OBL species x1 =                                               |       |
| 4                                          |                            |                      |                            | FACW species x2 =                                              |       |
| 5                                          |                            |                      |                            | FAC species x3 =                                               |       |
| 50% = <u>15</u> , 20% = <u>6</u>           | <u>30</u>                  | = Total Cove         | r                          | FACU species x4 =                                              |       |
| Herb Stratum (Plot size:)                  |                            |                      |                            | UPL species x5 =                                               |       |
| 1. youth on age (Tolmiea menziesii)        | <u>25</u>                  | <u>yes</u>           | FAC                        | Column Totals:(A)                                              | (B)   |
| 2. common bedstraw (Galium aparine)        | <u>10</u>                  | <u>yes</u>           | <u>FACU</u>                | Prevalence Index = B/A =                                       |       |
| 3. western swordfern (Polystichum munitum) | <u>5</u>                   | no                   | FACU                       | Hydrophytic Vegetation Indicators:                             |       |
| 4                                          |                            |                      |                            | 1 – Rapid Test for Hydrophytic Vegetation                      |       |
| 5                                          |                            |                      |                            | 2 - Dominance Test is >50%                                     |       |
| 6                                          |                            |                      |                            | $\Box$ 3 - Prevalence Index is $\leq 3.0^1$                    |       |
| 7                                          |                            |                      |                            | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting |       |
| 8                                          |                            |                      |                            | data in Remarks of on a separate sneet)                        |       |
| 9                                          |                            |                      |                            | 5 - Wetland Non-Vascular Plants                                |       |
| 10                                         |                            |                      |                            | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)      |       |
| 11                                         |                            |                      |                            | Indiastors of hydric coil and watland hydrology must           |       |
| 50% = <u>20</u> , 20% = <u>8</u>           | <u>40</u>                  | = Total Cove         | r                          | be present, unless disturbed or problematic.                   |       |
| Woody Vine Stratum (Plot size:)            |                            |                      |                            |                                                                |       |
| 1                                          |                            |                      |                            |                                                                |       |
| 2                                          |                            |                      |                            | Hydrophytic                                                    |       |
| 50% =, 20% =                               |                            | = Total Cove         | r                          | Present?                                                       |       |
| % Bare Ground in Herb Stratum              |                            |                      |                            |                                                                |       |
| Remarks:                                   |                            |                      |                            |                                                                |       |

#### Project Site: Williams Crossing

#### SOIL

| SOIL                 |                           |              |                |                   |                          |                         |                       | Sampling Point                       | <u>A-DP-2</u>             |                      |             |
|----------------------|---------------------------|--------------|----------------|-------------------|--------------------------|-------------------------|-----------------------|--------------------------------------|---------------------------|----------------------|-------------|
| Profile I            | Description: (Describe t  | o the dept   | n needed to do | ocument the indi  | cator or confiri         | n the absence           | of indicators.        | )                                    |                           |                      |             |
| Dept                 | n Matrix                  |              |                | Redox             | Features                 |                         |                       |                                      |                           |                      |             |
| (inches)             | Color (moist)             | %            | Color (moi     | ist) %            | Type <sup>1</sup>        | Loc <sup>2</sup>        | Texture               |                                      | Remai                     | ks                   |             |
| <u>0-6</u>           | <u>10YR 3/3</u>           | 100          |                |                   |                          |                         | loam                  |                                      |                           |                      |             |
| <u>6-13</u>          | 7.5YR3/3                  |              |                |                   |                          |                         | silt loam             |                                      |                           |                      |             |
| <u>13-1</u>          | <u>7.5YR4/3</u>           |              |                |                   |                          |                         | silt loam             | <u>sand</u>                          |                           |                      |             |
|                      |                           |              |                |                   |                          |                         |                       |                                      |                           |                      |             |
|                      |                           |              |                |                   |                          |                         |                       |                                      |                           |                      |             |
|                      |                           |              |                |                   |                          |                         |                       |                                      |                           |                      |             |
|                      |                           |              |                |                   |                          |                         |                       |                                      |                           |                      |             |
|                      |                           |              |                |                   |                          |                         |                       |                                      |                           |                      |             |
| <sup>1</sup> Type: C | = Concentration, D=Dep    | letion, RM=  | Reduced Matri  | x, CS=Covered o   | r Coated Sand (          | Grains. <sup>2</sup> Lo | ocation: PL=Por       | e Lining, M=Mat                      | rix                       |                      |             |
| Hydric S             | Soil Indicators: (Applica | ble to all L | .RRs, unless o | otherwise noted.) |                          |                         | Indicato              | rs for Problema                      | tic Hydric                | Soils <sup>3</sup> : |             |
| 🗆 Hi:                | stosol (A1)               |              |                | Sandy Redox (S    | 5)                       |                         | 2                     | cm Muck (A10)                        |                           |                      |             |
| 🗆 Hi:                | stic Epipedon (A2)        |              |                | Stripped Matrix   | (S6)                     |                         | 🗆 R                   | Red Parent Mate                      | ial (TF2)                 |                      |             |
| 🗆 Bla                | ack Histic (A3)           |              |                | Loamy Mucky M     | lineral (F1) <b>(exc</b> | ept MLRA 1)             | 🗆 V                   | ery Shallow Dar                      | k Surface (               | TF12)                |             |
| 🗆 Ну                 | drogen Sulfide (A4)       |              |                | Loamy Gleyed N    | /latrix (F2)             |                         |                       | Other (Explain in                    | Remarks)                  |                      |             |
| 🗆 De                 | pleted Below Dark Surfa   | ice (A11)    |                | Depleted Matrix   | (F3)                     |                         |                       |                                      |                           |                      |             |
| 🗆 Th                 | ick Dark Surface (A12)    |              |                | Redox Dark Sur    | face (F6)                |                         |                       |                                      |                           |                      |             |
| 🗆 Sa                 | ndy Mucky Mineral (S1)    |              |                | Depleted Dark S   | Surface (F7)             |                         | <sup>3</sup> Indicato | ors of hydrophytic                   | vegetation                | n and                |             |
| 🗆 Sa                 | ndy Gleyed Matrix (S4)    |              |                | Redox Depressi    | ons (F8)                 |                         | wetia<br>unles        | na nyarology mu<br>s disturbed or pi | st be prese<br>oblematic. | ent,                 |             |
| Restrict             | ive Layer (if present):   |              |                |                   |                          |                         |                       | •                                    |                           |                      |             |
| Type:                |                           |              |                |                   |                          |                         |                       |                                      |                           |                      |             |
| Depth (ir            | nches):                   |              |                |                   |                          | Hydric Soils P          | resent?               | Ye                                   | s 🗌                       | No                   | $\boxtimes$ |
| Remarks              | :                         |              |                |                   |                          |                         |                       |                                      |                           |                      |             |
|                      |                           |              |                |                   |                          |                         |                       |                                      |                           |                      |             |
|                      |                           |              |                |                   |                          |                         |                       |                                      |                           |                      |             |
|                      |                           |              |                |                   |                          |                         |                       |                                      |                           |                      |             |

#### HYDROLOGY

| Wetla           | and Hydrology Indicate                  | ors:       |           |           |             |                                                   |        |       |                           |             |        |    |  |
|-----------------|-----------------------------------------|------------|-----------|-----------|-------------|---------------------------------------------------|--------|-------|---------------------------|-------------|--------|----|--|
| Prima           | ary Indicators (minimum                 | of one re  | equired   | ; check   | all that    | t apply)                                          |        | Sec   | ondary Indicators (2 or n | nore requir | ed)    |    |  |
|                 | Surface Water (A1)                      |            |           |           |             | Water-Stained Leaves (B9)                         |        |       | Water-Stained Leaves      | (B9)        |        |    |  |
|                 | High Water Table (A2)                   | 1          |           |           |             | (except MLRA 1, 2, 4A, and 4B)                    |        |       | (MLRA 1, 2, 4A, and 4     | IB)         |        |    |  |
|                 | Saturation (A3)                         |            |           |           |             | Salt Crust (B11)                                  |        |       | Drainage Patterns (B1     | 0)          |        |    |  |
|                 | Water Marks (B1)                        |            |           |           |             | Aquatic Invertebrates (B13)                       |        |       | Dry-Season Water Tak      | ole (C2)    |        |    |  |
|                 | Sediment Deposits (B2                   | 2)         |           |           |             | Hydrogen Sulfide Odor (C1)                        |        |       | Saturation Visible on A   | erial Imag  | ery (C | 9) |  |
|                 | Drift Deposits (B3)                     |            |           |           |             | Oxidized Rhizospheres along Living Roots (C       | C3)    |       | Geomorphic Position (     | D2)         |        |    |  |
|                 | Algal Mat or Crust (B4                  | )          |           |           |             | Presence of Reduced Iron (C4)                     |        |       | Shallow Aquitard (D3)     |             |        |    |  |
|                 | Iron Deposits (B5)                      |            |           |           |             | Recent Iron Reduction in Tilled Soils (C6)        |        |       | FAC-Neutral Test (D5)     |             |        |    |  |
|                 | Surface Soil Cracks (E                  | 86)        |           |           |             | Stunted or Stresses Plants (D1) (LRR A)           |        |       | Raised Ant Mounds (D      | 6) (LRR A   | )      |    |  |
|                 | Inundation Visible on A                 | Aerial Ima | agery (E  | 37)       |             | Other (Explain in Remarks)                        |        |       | Frost-Heave Hummocl       | ks (D7)     |        |    |  |
|                 | Sparsely Vegetated C                    | oncave S   | Surface   | (B8)      |             |                                                   |        |       |                           |             |        |    |  |
| Field           | Observations:                           |            |           |           |             |                                                   |        |       |                           |             |        |    |  |
| Surfa           | ce Water Present?                       | Yes        |           | No        | $\boxtimes$ | Depth (inches):                                   |        |       |                           |             |        |    |  |
| Wate            | r Table Present?                        | Yes        |           | No        | $\boxtimes$ | Depth (inches):                                   |        |       |                           |             |        |    |  |
| Satur<br>(inclu | ation Present?<br>des capillary fringe) | Yes        |           | No        | $\boxtimes$ | Depth (inches):                                   | Wetlan | d Hyd | drology Present?          | Yes         |        | No |  |
| Desc            | ribe Recorded Data (str                 | eam gau    | ge, mor   | nitoring  | well, a     | erial photos, previous inspections), if available | 9:     |       |                           |             |        |    |  |
|                 |                                         |            |           |           |             |                                                   |        |       |                           |             |        |    |  |
| Rema            | arks: some indicatio                    | on of satu | iration a | at 20", s | hallow      | slope above wetland edge.                         |        |       |                           |             |        |    |  |
|                 |                                         |            |           |           |             |                                                   |        |       |                           |             |        |    |  |
|                 |                                         |            |           |           |             |                                                   |        |       |                           |             |        |    |  |
|                 |                                         |            |           |           |             |                                                   |        |       |                           |             |        |    |  |

## WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

| Project Site:            | Williams       | Crossi      | ng                 |              |                   | Ci          | ity/County: | Lace     | y/Thu   | <u>rston</u>       | Sampling D        | Date:  | <u>04/</u> | 14/202   | 21 |
|--------------------------|----------------|-------------|--------------------|--------------|-------------------|-------------|-------------|----------|---------|--------------------|-------------------|--------|------------|----------|----|
| Applicant/Owner:         | Three's C      | Compa       | ny                 |              |                   |             |             |          |         | State: WA          | Sampling F        | Point: | <u>B-D</u> | P-1      |    |
| Investigator(s):         | R. Pratt C     | ). G. R     | land               |              |                   |             |             | Se       | ection, | Township, Rang     | ge: <u>S09T18</u> | BNR1W  |            |          |    |
| Landform (hillslope, ter | race, etc.)    | ): <u>d</u> | epression          |              |                   | Local relie | ef (concave | e, conve | ex, non | e): <u>concave</u> |                   | Slop   | be (%):    | <u>2</u> |    |
| Subregion (LRR):         | <u>A</u>       |             |                    | Lat:         | 47.0608           |             |             | Long:    | -122.   | <u>8142</u>        |                   | Datum: | WGS8       | <u>4</u> |    |
| Soil Map Unit Name:      | <u>Skipopa</u> | a Silt Lo   | <u>pam</u>         |              |                   |             |             |          |         | NWI class          | sification:       | PFO    |            |          |    |
| Are climatic / hydrologi | c conditio     | ns on t     | he site typical fo | or this tir  | me of year?       | Yes         | $\boxtimes$ | No       |         | (If no, explain in | n Remarks.)       |        |            |          |    |
| Are Vegetation           | Soil           | □,          | or Hydrology       | <b>□</b> , s | significantly dis | sturbed?    | Are "No     | rmal Ci  | rcumst  | ances" present?    |                   | Yes    | $\bowtie$  | No       |    |
| Are Vegetation           | Soil           | □,          | or Hydrology       | □, r         | naturally proble  | ematic?     | (If need    | ed, exp  | lain an | y answers in Re    | marks.)           |        |            |          |    |

#### SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present? | Yes | $\boxtimes$ | No |                                          |     |             |    |  |
|---------------------------------|-----|-------------|----|------------------------------------------|-----|-------------|----|--|
| Hydric Soil Present?            | Yes | $\boxtimes$ | No | Is the Sampled Area<br>within a Wetland? | Yes | $\boxtimes$ | No |  |
| Wetland Hydrology Present?      | Yes | $\boxtimes$ | No |                                          |     |             |    |  |
| Remarks:                        |     |             |    |                                          |     |             |    |  |

| VEGETATION – Use scientific names of plant                    | S                          |                                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |       |
|---------------------------------------------------------------|----------------------------|-----------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
| Tree Stratum (Plot size:)                                     | Absolute<br><u>% Cover</u> | Dominant<br>Species?                          | Indicator<br><u>Status</u> | Dominance Test Worksheet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |       |
| 1. <u>red alder (Alnus rubra)</u>                             | <u>30</u>                  | <u>yes</u>                                    | FAC                        | Number of Dominant Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e            | (4)   |
| 2. Douglas-fir (Pseudotsuga menziesii)                        | <u>10</u>                  | <u>yes</u>                                    | FACU                       | That Are OBL, FACW, or FAC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2            | (A)   |
| <ol> <li><u>western red cedar (Thuja plicata)</u></li> </ol>  | <u>10</u>                  | <u>ves</u>                                    | <u>FAC</u>                 | Total Number of Dominant<br>Species Across All Strata:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>3</u>     | (B)   |
| 50% = 25, 20% = 10                                            | 50                         | = Total Cove                                  |                            | Demonstrat Demonstration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |       |
| Sapling/Shrub Stratum (Plot size: )                           | <u></u>                    |                                               |                            | That Are OBL, FACW, or FAC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>75</u>    | (A/B) |
| 1 Indian plum (Oemleria cerasiformis)                         | 5                          | no                                            | FACU                       | Prevalence Index worksheet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |       |
| 2 red elderberry (Sambucus racemosa)                          | 2                          | no                                            | FACU                       | Total % Cover of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Multiply by: |       |
| <ol> <li>salmonberry (Rubus spectabilis)</li> </ol>           | =<br>30                    | ves                                           | FAC                        | OBL species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x1 =         |       |
| 4.                                                            |                            | <u></u>                                       |                            | FACW species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x2 =         |       |
| 5.                                                            |                            |                                               |                            | FAC species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x3 =         |       |
| 50% = 18.5, 20% =                                             | 37                         | = Total Cove                                  |                            | FACU species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×4 =         |       |
| Herb Stratum (Plot size: )                                    | <u></u>                    |                                               |                            | UPL species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×5 =         |       |
| 1. false lilv-of-the-vallev (Maianthemum dilatatum)           | 5                          | ves                                           | FAC                        | Column Totals: (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | (B)   |
| <ol> <li>spotted touch-me-not (Impatiens capensis)</li> </ol> | 5                          | Ves                                           | FACW                       | $\frac{1}{2} = \frac{1}{2} = \frac{1}$ |              | _(=)  |
| 3 Pacific bleeding heart (Dicentra formosa)                   | <u> </u>                   | ves                                           | FACU                       | Hydrophytic Vegetation Indicators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |       |
| A Pacific waterleaf (Hydrophyllum tenuipes)                   | <u>s</u>                   | ves                                           | FAC                        | $\square$ 1 – Rapid Test for Hydrophytic Vegetation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n            |       |
| 5                                                             | <u>-</u>                   | <u>, , , , , , , , , , , , , , , , , , , </u> | 1710                       | <ul> <li>2 - Dominance Test is &gt;50%</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |       |
| 6                                                             |                            |                                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |       |
| 7                                                             |                            |                                               |                            | S - Prevalence index is <u>&lt;</u> 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |       |
| 8.                                                            |                            |                                               |                            | data in Remarks or on a separate shee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | et)          |       |
| 9                                                             |                            |                                               |                            | 5 - Wetland Non-Vascular Plants <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |       |
| 10                                                            |                            |                                               |                            | Problematic Hydrophytic Vegetation <sup>1</sup> (Exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | olain)       |       |
| 11                                                            |                            |                                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,            |       |
| 50% = <u>10</u> , 20% = <u>4</u>                              | <u>20</u>                  | = Total Cove                                  | r                          | <sup>1</sup> Indicators of hydric soil and wetland hydrology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | must         |       |
| Woody Vine Stratum (Plot size:)                               |                            |                                               |                            | be present, unless disturbed of problematic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |       |
| 1                                                             |                            |                                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |       |
| 2                                                             |                            |                                               |                            | Hydrophytic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | _     |
| 50% =, 20% =                                                  |                            | = Total Cove                                  | r                          | Vegetation Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No           |       |
| % Bare Ground in Herb Stratum                                 |                            |                                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |       |
| Remarks:                                                      |                            |                                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |       |

#### Project Site: Williams Crossing

#### SOIL

| SOIL                  |                          |              |                  |                 |                          |                        |                       | Sampling Point: B-I                          | <u>DP-1</u>         |                     |  |
|-----------------------|--------------------------|--------------|------------------|-----------------|--------------------------|------------------------|-----------------------|----------------------------------------------|---------------------|---------------------|--|
| Profile De            | escription: (Describe to | o the dept   | h needed to do   | ocument the ind | licator or confir        | m the absence          | e of indicators.      | )                                            |                     |                     |  |
| Depth                 | Matrix                   |              |                  | Redox           | Features                 |                        |                       |                                              |                     |                     |  |
| (inches)              | Color (moist)            | %            | Color (mo        | ist) %          | Type <sup>1</sup>        | Loc <sup>2</sup>       | Texture               |                                              | Remarks             | 6                   |  |
| <u>0-8</u>            | <u>10YR 2/2</u>          | 100          |                  |                 |                          |                        | silt loam             |                                              |                     |                     |  |
| <u>8-12</u>           | <u>10YR2/2</u>           | <u>60</u>    | <u>10YR 4/4</u>  | <u>1 30</u>     | <u>C</u>                 | <u>m</u>               | <u>loam</u>           | redox loam                                   |                     |                     |  |
| <u>12-15</u>          | 2.5YR 4/3                | <u>100</u>   |                  |                 |                          |                        | loam                  |                                              |                     |                     |  |
| <u>15-20</u>          | <u>10YR 5/2</u>          | <u>80</u>    | <u>7.5YR 4/6</u> | <u>6 20</u>     |                          |                        | loam                  | sandy loam                                   |                     |                     |  |
|                       |                          |              |                  |                 |                          |                        |                       |                                              |                     |                     |  |
|                       |                          |              |                  |                 |                          |                        |                       |                                              |                     |                     |  |
|                       |                          |              |                  |                 |                          |                        |                       |                                              |                     |                     |  |
|                       |                          |              |                  |                 |                          |                        |                       |                                              |                     |                     |  |
| <sup>1</sup> Type: C= | Concentration, D=Depl    | letion, RM=  | Reduced Matri    | x, CS=Covered   | or Coated Sand           | Grains. <sup>2</sup> L | ocation: PL=Poi       | re Lining, M=Matrix                          |                     |                     |  |
| Hydric So             | oil Indicators: (Applica | ble to all L | RRs, unless c    | therwise noted  | .)                       |                        | Indicato              | ors for Problematic                          | Hydric S            | oils <sup>3</sup> : |  |
| Hist                  | osol (A1)                |              |                  | Sandy Redox (   | S5)                      |                        | □ 2                   | cm Muck (A10)                                |                     |                     |  |
| Hist                  | ic Epipedon (A2)         |              |                  | Stripped Matrix | (S6)                     |                        | D F                   | Red Parent Material (                        | TF2)                |                     |  |
| 🗆 Blad                | ck Histic (A3)           |              |                  | Loamy Mucky M   | Mineral (F1) <b>(exc</b> | ept MLRA 1)            |                       | /ery Shallow Dark Si                         | urface (T           | =12)                |  |
| 🗆 Hyd                 | rogen Sulfide (A4)       |              |                  | Loamy Gleyed    | Matrix (F2)              |                        |                       | Other (Explain in Rer                        | narks)              |                     |  |
| 🗆 Dep                 | leted Below Dark Surfa   | ce (A11)     |                  | Depleted Matrix | < (F3)                   |                        |                       |                                              |                     |                     |  |
| 🔲 Thio                | k Dark Surface (A12)     |              | $\boxtimes$      | Redox Dark Su   | rface (F6)               |                        |                       |                                              |                     |                     |  |
| 🗆 San                 | dy Mucky Mineral (S1)    |              |                  | Depleted Dark   | Surface (F7)             |                        | <sup>3</sup> Indicato | ors of hydrophytic ve                        | getation a          | and                 |  |
| 🗆 San                 | dy Gleyed Matrix (S4)    |              |                  | Redox Depress   | ions (F8)                |                        | wetla                 | nd hydrology must b<br>s disturbed or proble | e presen<br>ematic. | t,                  |  |
| Restrictiv            | e Layer (if present):    |              |                  |                 |                          |                        |                       |                                              |                     |                     |  |
| Type:                 |                          |              |                  |                 |                          |                        |                       |                                              |                     |                     |  |
| Depth (inc            | :hes):                   |              |                  |                 |                          | Hydric Soils F         | Present?              | Yes                                          | $\boxtimes$         | No                  |  |
| Remarks:              |                          |              |                  |                 | L                        |                        |                       |                                              |                     |                     |  |
|                       |                          |              |                  |                 |                          |                        |                       |                                              |                     |                     |  |
|                       |                          |              |                  |                 |                          |                        |                       |                                              |                     |                     |  |
|                       |                          |              |                  |                 |                          |                        |                       |                                              |                     |                     |  |
|                       |                          |              |                  |                 |                          |                        |                       |                                              |                     |                     |  |

#### HYDROLOGY

| Wetl           | and Hydrology Indicat   | ors:      |          |          |          |                                                  |            |             |                         |              |             |    |  |
|----------------|-------------------------|-----------|----------|----------|----------|--------------------------------------------------|------------|-------------|-------------------------|--------------|-------------|----|--|
| Prim           | ary Indicators (minimum | of one re | equired  | ; check  | all that | t apply)                                         |            | Sec         | ondary Indicators (2 or | more require | ed)         |    |  |
|                | Surface Water (A1)      |           |          |          |          | Water-Stained Leaves (B9)                        |            |             | Water-Stained Leave     | s (B9)       |             |    |  |
|                | High Water Table (A2)   | )         |          |          |          | (except MLRA 1, 2, 4A, and 4B)                   |            |             | (MLRA 1, 2, 4A, and     | 4B)          |             |    |  |
| $\boxtimes$    | Saturation (A3)         |           |          |          |          | Salt Crust (B11)                                 |            | $\boxtimes$ | Drainage Patterns (B    | 10)          |             |    |  |
|                | Water Marks (B1)        |           |          |          |          | Aquatic Invertebrates (B13)                      |            |             | Dry-Season Water Ta     | able (C2)    |             |    |  |
|                | Sediment Deposits (B    | 2)        |          |          |          | Hydrogen Sulfide Odor (C1)                       |            |             | Saturation Visible on   | Aerial Image | ery (C9     | )  |  |
|                | Drift Deposits (B3)     |           |          |          |          | Oxidized Rhizospheres along Living Roots         | (C3)       | $\boxtimes$ | Geomorphic Position     | (D2)         |             |    |  |
|                | Algal Mat or Crust (B4  | .)        |          |          |          | Presence of Reduced Iron (C4)                    |            |             | Shallow Aquitard (D3    | )            |             |    |  |
|                | Iron Deposits (B5)      |           |          |          |          | Recent Iron Reduction in Tilled Soils (C6)       |            |             | FAC-Neutral Test (D5    | 5)           |             |    |  |
|                | Surface Soil Cracks (E  | 36)       |          |          |          | Stunted or Stresses Plants (D1) (LRR A)          |            |             | Raised Ant Mounds (     | D6) (LRR A   | )           |    |  |
|                | Inundation Visible on   | Aerial Im | agery (I | B7)      |          | Other (Explain in Remarks)                       |            |             | Frost-Heave Hummo       | cks (D7)     |             |    |  |
|                | Sparsely Vegetated C    | oncave S  | Surface  | (B8)     |          |                                                  |            |             |                         |              |             |    |  |
| Field          | Observations:           |           |          |          |          |                                                  |            |             |                         |              |             |    |  |
| Surfa          | ce Water Present?       | Yes       |          | No       |          | Depth (inches):                                  |            |             |                         |              |             |    |  |
| Wate           | r Table Present?        | Yes       |          | No       |          | Depth (inches):                                  |            |             |                         |              |             |    |  |
| Satu<br>(inclu | ation Present?          | Yes       |          | No       |          | Depth (inches): <u>15</u>                        | Wetlar     | nd Hy       | drology Present?        | Yes          | $\boxtimes$ | No |  |
| Desc           | ribe Recorded Data (str | eam gau   | ige, mo  | nitoring | well, a  | erial photos, previous inspections), if availabl | le:        |             |                         |              |             |    |  |
|                |                         |           |          |          |          |                                                  |            |             |                         |              |             |    |  |
| Rem            | arks: Weather drier     | than nor  | mal prid | or to de | lineatic | on. See results from Corps Antecedent Precip     | bitation - | Tool a      | ttached to report.      |              |             |    |  |
|                |                         |           |          |          |          |                                                  |            |             |                         |              |             |    |  |
|                |                         |           |          |          |          |                                                  |            |             |                         |              |             |    |  |
|                |                         |           |          |          |          |                                                  |            |             |                         |              |             |    |  |

## WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

| Project Site:            | Williams       | Crossi      | ng                   |            |                  | C           | ity/County: | Lace     | ey/Thu  | rston              | Sampling D        | Date:  | 04/         | 14/202   | 21 |
|--------------------------|----------------|-------------|----------------------|------------|------------------|-------------|-------------|----------|---------|--------------------|-------------------|--------|-------------|----------|----|
| Applicant/Owner:         | Three's C      | Compa       | ny                   |            |                  |             |             |          |         | State: <u>WA</u>   | Sampling F        | Point: | B-D         | P-2      |    |
| Investigator(s):         | R. Pratt C     | ). G. F     | Rand                 |            |                  |             |             | S        | ection, | Township, Rang     | ge: <u>S09T18</u> | BNR1W  |             |          |    |
| Landform (hillslope, ter | race, etc.)    | ): <u>c</u> | lepression           |            |                  | Local relie | ef (concave | e, conve | ex, non | e): <u>concave</u> |                   | Slo    | pe (%):     | <u>2</u> |    |
| Subregion (LRR):         | <u>A</u>       |             |                      | Lat        | 47.0608          |             |             | Long:    | -122.   | <u>8142</u>        |                   | Datum: | WGS8        | 34       |    |
| Soil Map Unit Name:      | <u>Skipopa</u> | a Silt L    | oam                  |            |                  |             |             |          |         | NWI class          | sification:       | None   |             |          |    |
| Are climatic / hydrologi | c conditio     | ns on t     | the site typical for | or this ti | me of year?      | Yes         | $\boxtimes$ | No       |         | (If no, explain in | n Remarks.)       |        |             |          |    |
| Are Vegetation $\Box$ ,  | Soil           | □,          | or Hydrology         | □,         | significantly di | sturbed?    | Are "No     | rmal Ci  | rcumst  | ances" present?    |                   | Yes    | $\boxtimes$ | No       |    |
| Are Vegetation $\Box$ ,  | Soil           | □,          | or Hydrology         | □,         | naturally probl  | ematic?     | (If neede   | ed, exp  | lain an | y answers in Re    | marks.)           |        |             |          |    |

#### SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present? | Yes | $\boxtimes$ | No |             |                                          |     |    |             |
|---------------------------------|-----|-------------|----|-------------|------------------------------------------|-----|----|-------------|
| Hydric Soil Present?            | Yes |             | No | $\boxtimes$ | Is the Sampled Area<br>within a Wetland? | Yes | No | $\boxtimes$ |
| Wetland Hydrology Present?      | Yes |             | No | $\boxtimes$ |                                          |     |    |             |
| Remarks:                        |     |             |    |             |                                          |     |    |             |

| VEGETATION – Use scientific names of plant                 | S                   |                      |                     |                                                                |             |       |
|------------------------------------------------------------|---------------------|----------------------|---------------------|----------------------------------------------------------------|-------------|-------|
| Tree Stratum (Plot size:)                                  | Absolute<br>% Cover | Dominant<br>Species? | Indicator<br>Status | Dominance Test Worksheet:                                      |             |       |
| 1. <u>red alder (Alnus rubra)</u>                          | <u>40</u>           | <u>yes</u>           | FAC                 | Number of Dominant Species                                     |             | (A)   |
| 2. <u>5western red cedar (Thuja plicata)</u>               | <u>15</u>           | <u>yes</u>           | FAC                 | That Are OBL, FACW, or FAC: 2                                  |             | (A)   |
| 3.                                                         |                     |                      |                     | Total Number of Dominant                                       |             | (B)   |
| 4.                                                         |                     |                      |                     | Species Across All Strata:                                     |             | (В)   |
| 50% = <u>27.5</u> , 20% = <u>10</u>                        | <u>55</u>           | = Total Cove         | er                  | Percent of Dominant Species                                    | 2           | (A/P) |
| Sapling/Shrub Stratum (Plot size:)                         |                     |                      |                     | That Are OBL, FACW, or FAC:                                    | 2           | (A/B) |
| 1. Indian plum (Oemleria cerasiformis)                     | <u>60</u>           | <u>ves</u>           | FACU                | Prevalence Index worksheet:                                    |             |       |
| 2. salmonberry (Rubus spectabilis)                         | <u>20</u>           | <u>yes</u>           | FAC                 | Total % Cover of: M                                            | ultiply by: |       |
| 3                                                          |                     |                      |                     | OBL species x1                                                 | I =         |       |
| 4                                                          |                     |                      |                     | FACW species x2                                                | 2 =         |       |
| 5                                                          |                     |                      |                     | FAC species X3                                                 | 3 =         |       |
| 50% = <u>30</u> , 20% = <u>12</u>                          | <u>60</u>           | = Total Cove         | er                  | FACU species x4                                                | 4 =         |       |
| Herb Stratum (Plot size:)                                  |                     |                      |                     | UPL species x5                                                 | 5 =         |       |
| 1. stinging nettle (Urtica dioica)                         | <u>25</u>           | yes                  | <u>FAC</u>          | Column Totals: (A)                                             |             | (B)   |
| 2. western swordfern (Polystichum munitum)                 | <u>5</u>            | no                   | FACU                | Prevalence Index = B/A =                                       |             |       |
| 3. <u>false lily-of-the-valley (Maianthemum dilatatum)</u> | <u>25</u>           | yes                  | FAC                 | Hydrophytic Vegetation Indicators:                             |             |       |
| 4. youth on age (Tolmiea menziesii)                        | <u>10</u>           | <u>no</u>            | FAC                 | 1 – Rapid Test for Hydrophytic Vegetation                      |             |       |
| 5                                                          |                     |                      |                     | 2 - Dominance Test is >50%                                     |             |       |
| 6                                                          |                     |                      |                     | $\Box$ 3 - Prevalence Index is $\leq 3.0^1$                    |             |       |
| 7                                                          |                     |                      |                     | 4 - Morphological Adaptations <sup>1</sup> (Provide su         | pporting    |       |
| 8                                                          |                     |                      |                     | data in Remarks or on a separate sheet                         | t)          |       |
| 9                                                          |                     |                      |                     | 5 - Wetland Non-Vascular Plants <sup>1</sup>                   |             |       |
| 10                                                         |                     |                      |                     | Problematic Hydrophytic Vegetation <sup>1</sup> (Expl          | ain)        |       |
| 11                                                         |                     |                      |                     |                                                                |             |       |
| 50% = <u>32.5</u> , 20% = <u>13</u>                        | <u>65</u>           | = Total Cove         | er                  | <sup>1</sup> Indicators of hydric soil and wetland hydrology r | nust        |       |
| Woody Vine Stratum (Plot size:)                            |                     |                      |                     |                                                                |             |       |
| 1                                                          |                     |                      |                     |                                                                |             |       |
| 2                                                          |                     |                      |                     | Hydrophytic                                                    |             | _     |
| 50% =, 20% =                                               |                     | = Total Cove         | er                  | Vegetation Yes 🖂                                               | NO          |       |
| % Bare Ground in Herb Stratum                              |                     |                      |                     |                                                                |             |       |
| Remarks:                                                   |                     |                      |                     |                                                                |             |       |

#### Project Site: Williams Crossing

### SOII

| SOIL      | _           |                     |              |               |            |             |                       |                      |                    |                    | Sampling      | g Point: <u>B-D</u> | )P-2      |        |  |
|-----------|-------------|---------------------|--------------|---------------|------------|-------------|-----------------------|----------------------|--------------------|--------------------|---------------|---------------------|-----------|--------|--|
| Profi     | le Descr    | iption: (Describe t | o the depth  | n needed to d | ocument    | the indica  | ator or confi         | rm the absend        | ce of              | indicato           | ors.)         |                     |           |        |  |
| De        | epth        | Matrix              |              |               |            | Redox Fe    | eatures               |                      |                    |                    |               |                     |           |        |  |
| (inch     | ies)        | Color (moist)       | %            | Color (mo     | oist)      | %           | Type <sup>1</sup>     | Loc <sup>2</sup>     |                    | Texture            |               |                     | Remarks   | ;      |  |
| <u>0</u>  | -13         | <u>10YR 3/2</u>     | 100          |               |            |             |                       |                      |                    | loam               |               |                     |           |        |  |
| <u>13</u> | <u>3-15</u> | <u>10YR3/3</u>      | 100          |               |            |             |                       |                      |                    | loam               |               |                     |           |        |  |
|           |             |                     |              |               |            |             |                       |                      |                    |                    |               |                     |           |        |  |
|           |             |                     |              |               |            |             |                       |                      |                    |                    |               |                     |           |        |  |
|           |             |                     |              |               |            |             |                       |                      |                    |                    |               |                     |           |        |  |
|           |             |                     |              |               |            |             |                       |                      |                    |                    |               |                     |           |        |  |
|           |             |                     |              |               |            |             |                       |                      |                    |                    |               |                     |           |        |  |
|           |             |                     |              |               |            |             |                       |                      |                    |                    |               |                     |           |        |  |
| 1Туре     | e: C= Co    | ncentration, D=Dep  | letion, RM=  | Reduced Mat   | rix, CS=Co | vered or    | Coated Sand           | Grains. <sup>2</sup> | <sup>2</sup> Locat | tion: PL=          | Pore Lining,  | M=Matrix            |           |        |  |
| Hydri     | ic Soil Ir  | dicators: (Applica  | ble to all L | RRs, unless   | otherwise  | noted.)     |                       |                      |                    | Indic              | ators for Pro | oblematic I         | Hydric S  | oils³: |  |
|           | Histoso     | (A1)                |              |               | Sandy R    | edox (S5    | )                     |                      |                    |                    | 2 cm Muck     | (A10)               |           |        |  |
|           | Histic E    | pipedon (A2)        |              |               | Stripped   | Matrix (S   | 6)                    |                      |                    |                    | Red Paren     | t Material (        | TF2)      |        |  |
|           | Black H     | istic (A3)          |              |               | Loamy N    | /lucky Mir  | neral (F1) <b>(ex</b> | cept MLRA 1)         | )                  |                    | Very Shall    | ow Dark Su          | rface (TF | -12)   |  |
|           | Hydrog      | en Sulfide (A4)     |              |               | Loamy C    | Bleyed Ma   | atrix (F2)            |                      |                    |                    | Other (Exp    | lain in Rem         | narks)    |        |  |
|           | Deplete     | d Below Dark Surfa  | ce (A11)     |               | Depleted   | d Matrix (F | F3)                   |                      |                    |                    |               |                     |           |        |  |
|           | Thick D     | ark Surface (A12)   |              |               | Redox D    | ark Surfa   | ice (F6)              |                      |                    |                    |               |                     |           |        |  |
|           | Sandy I     | Aucky Mineral (S1)  |              |               | Depleted   | d Dark Su   | rface (F7)            |                      |                    | <sup>3</sup> Indic | ators of hydr | ophytic veg         | etation a | and    |  |
|           | Sandy (     | Gleyed Matrix (S4)  |              |               | Redox D    | epressio    | ns (F8)               |                      |                    | ur                 | less disturbe | d or proble         | matic.    | ι,     |  |
| Restr     | rictive L   | ayer (if present):  |              |               |            |             |                       |                      |                    |                    |               |                     |           |        |  |
| Type:     | :           |                     |              |               |            |             |                       |                      |                    |                    |               |                     |           |        |  |
| Depth     | h (inches   | ):                  |              |               |            |             |                       | Hydric Soils         | s Pres             | ent?               |               | Yes                 |           | No     |  |
| Rema      | arks:       |                     |              |               |            |             |                       |                      |                    |                    |               |                     |           |        |  |
|           |             |                     |              |               |            |             |                       |                      |                    |                    |               |                     |           |        |  |
|           |             |                     |              |               |            |             |                       |                      |                    |                    |               |                     |           |        |  |
|           |             |                     |              |               |            |             |                       |                      |                    |                    |               |                     |           |        |  |

#### HYDROLOGY

| Wetla           | retland Hydrology Indicators:         rimary Indicators (minimum of one required: check all that apply)         Secondary Indicators (2 or more required) |            |          |         |             |                                             |                     |        |                           |                  |        |    |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|---------|-------------|---------------------------------------------|---------------------|--------|---------------------------|------------------|--------|----|--|--|
| Prima           | ary Indicators (minimum                                                                                                                                   | of one re  | equired  | ; check | all that    | t apply)                                    |                     | Sec    | ondary Indicators (2 or m | ore requir       | ed)    |    |  |  |
|                 | Surface Water (A1)                                                                                                                                        |            |          |         |             | Water-Stained Leaves (B9)                   |                     |        | Water-Stained Leaves      | (B9)             |        |    |  |  |
|                 | High Water Table (A2)                                                                                                                                     |            |          |         |             | (except MLRA 1, 2, 4A, and 4B)              |                     |        | (MLRA 1, 2, 4A, and 4     | B)               |        |    |  |  |
|                 | Saturation (A3)                                                                                                                                           |            |          |         |             | Salt Crust (B11)                            |                     |        | Drainage Patterns (B10    | D)               |        |    |  |  |
|                 | Water Marks (B1)                                                                                                                                          |            |          |         |             | Aquatic Invertebrates (B13)                 |                     |        | Dry-Season Water Tab      | le (C2)          |        |    |  |  |
|                 | Sediment Deposits (B                                                                                                                                      | 2)         |          |         |             | Hydrogen Sulfide Odor (C1)                  |                     |        | Saturation Visible on A   | erial Imag       | ery (C | 9) |  |  |
|                 | Drift Deposits (B3)                                                                                                                                       |            |          |         |             | Oxidized Rhizospheres along Living Roots (C | C3)                 |        | Geomorphic Position (I    | D2)              |        |    |  |  |
|                 | Algal Mat or Crust (B4                                                                                                                                    | )          |          |         |             | Presence of Reduced Iron (C4)               |                     |        | Shallow Aquitard (D3)     |                  |        |    |  |  |
|                 | Iron Deposits (B5)                                                                                                                                        |            |          |         |             | Recent Iron Reduction in Tilled Soils (C6)  |                     |        | FAC-Neutral Test (D5)     |                  |        |    |  |  |
|                 | Surface Soil Cracks (E                                                                                                                                    | 86)        |          |         |             | Stunted or Stresses Plants (D1) (LRR A)     |                     |        | Raised Ant Mounds (D      | 6) <b>(LRR A</b> | )      |    |  |  |
|                 | Inundation Visible on A                                                                                                                                   | Aerial Ima | agery (I | 37)     |             |                                             | Frost-Heave Hummock | s (D7) |                           |                  |        |    |  |  |
|                 | Sparsely Vegetated C                                                                                                                                      | oncave S   | Surface  | (B8)    |             |                                             |                     |        |                           |                  |        |    |  |  |
| Field           | Observations:                                                                                                                                             |            |          |         |             |                                             |                     |        |                           |                  |        |    |  |  |
| Surfa           | ce Water Present?                                                                                                                                         | Yes        |          | No      | $\boxtimes$ | Depth (inches):                             |                     |        |                           |                  |        |    |  |  |
| Wate            | r Table Present?                                                                                                                                          | Yes        |          | No      | $\boxtimes$ | Depth (inches):                             |                     |        |                           |                  |        |    |  |  |
| Satur<br>(inclu | Water Table Present? Yes L No<br>Saturation Present? Yes □ No<br>(includes capillary fringe)                                                              |            |          |         |             | Depth (inches): W                           | Netlan              | d Hyd  | trology Present?          | Yes              |        | No |  |  |
| Desc            | Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:                                                |            |          |         |             |                                             |                     |        |                           |                  |        |    |  |  |
|                 |                                                                                                                                                           |            |          |         |             |                                             |                     |        |                           |                  |        |    |  |  |
| Rema            | arks: No hydrology                                                                                                                                        | indicator  | s - up s | lope of | wetlan      | d edge.                                     |                     |        |                           |                  |        |    |  |  |
|                 |                                                                                                                                                           |            |          |         |             |                                             |                     |        |                           |                  |        |    |  |  |
|                 |                                                                                                                                                           |            |          |         |             |                                             |                     |        |                           |                  |        |    |  |  |
|                 |                                                                                                                                                           |            |          |         |             |                                             |                     |        |                           |                  |        |    |  |  |

## WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

| Project Site:            | Williams       | Crossi      | ng                 |            |                  | Ci          | ty/County:  | Lace     | ey/Thu  | <u>rston</u>       | Sampling D        | Date:  | <u>04/</u> | 14/202   | <u>21</u> |
|--------------------------|----------------|-------------|--------------------|------------|------------------|-------------|-------------|----------|---------|--------------------|-------------------|--------|------------|----------|-----------|
| Applicant/Owner:         | Three's C      | Compa       | ny                 |            |                  |             |             |          |         | State: WA          | Sampling F        | Point: | <u>B-D</u> | P-3      |           |
| Investigator(s):         | R. Pratt C     | ). G. R     | and                |            |                  |             |             | S        | ection, | Township, Rang     | ge: <u>S09T18</u> | BNR1W  |            |          |           |
| Landform (hillslope, ter | rrace, etc.)   | ): <u>d</u> | epression          |            |                  | Local relie | ef (concave | e, conve | ex, non | e): <u>concave</u> |                   | Slop   | be (%):    | <u>2</u> |           |
| Subregion (LRR):         | <u>A</u>       |             |                    | Lat        | 47.0608          |             |             | Long:    | -122.   | <u>8142</u>        |                   | Datum: | WGS8       | 34       |           |
| Soil Map Unit Name:      | <u>Skipopa</u> | a Silt Lo   | <u>bam</u>         |            |                  |             |             |          |         | NWI class          | sification:       | PFO    |            |          |           |
| Are climatic / hydrologi | c conditio     | ns on t     | he site typical fo | or this ti | me of year?      | Yes         | $\boxtimes$ | No       |         | (If no, explain in | n Remarks.)       |        |            |          |           |
| Are Vegetation ,         | Soil           | □,          | or Hydrology       | □,         | significantly di | sturbed?    | Are "Noi    | rmal Ci  | rcumst  | ances" present?    |                   | Yes    | $\bowtie$  | No       |           |
| Are Vegetation $\Box$ ,  | Soil           | □,          | or Hydrology       | □,         | naturally probl  | ematic?     | (If neede   | ed, exp  | lain an | y answers in Re    | marks.)           |        |            |          |           |

#### SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present? | Yes | $\boxtimes$ | No |                                          |     |             |    |  |
|---------------------------------|-----|-------------|----|------------------------------------------|-----|-------------|----|--|
| Hydric Soil Present?            | Yes | $\boxtimes$ | No | Is the Sampled Area<br>within a Wetland? | Yes | $\boxtimes$ | No |  |
| Wetland Hydrology Present?      | Yes | $\boxtimes$ | No |                                          |     |             |    |  |
| Remarks:                        |     |             |    |                                          |     |             |    |  |

| VEGETATION – Use scientific names of plant          | s                   |                      |                     |                                                                 |       |
|-----------------------------------------------------|---------------------|----------------------|---------------------|-----------------------------------------------------------------|-------|
| Tree Stratum (Plot size:)                           | Absolute<br>% Cover | Dominant<br>Species? | Indicator<br>Status | Dominance Test Worksheet:                                       |       |
| 1. <u>red alder (Alnus rubra)</u>                   | <u>40</u>           | yes                  | FAC                 | Number of Dominant Species                                      | (A)   |
| 2. western red cedar (Thuja plicata)                | <u>20</u>           | <u>yes</u>           | FAC                 | That Are OBL, FACW, or FAC: 4                                   | (A)   |
| 3.<br>4.                                            |                     | —                    |                     | Total Number of Dominant<br>Species Across All Strata: <u>6</u> | (B)   |
| 50% = 30, 20% = 12                                  | 60                  | = Total Cove         | r                   | Percent of Dominant Species                                     |       |
| Sapling/Shrub Stratum (Plot size:)                  |                     |                      |                     | That Are OBL, FACW, or FAC: <u>67</u>                           | (A/B) |
| 1. Indian plum (Oemleria cerasiformis)              | <u>15</u>           | <u>ves</u>           | FACU                | Prevalence Index worksheet:                                     |       |
| 2.                                                  |                     |                      |                     | Total % Cover of: Multiply by:                                  |       |
| 3                                                   |                     |                      |                     | OBL species x1 =                                                |       |
| 4                                                   |                     |                      |                     | FACW species x2 =                                               |       |
| 5                                                   |                     |                      |                     | FAC species x3 =                                                |       |
| 50% = <u>7.5,</u> 20% = <u>3</u>                    | <u>15</u>           | = Total Cove         | r                   | FACU species x4 =                                               |       |
| Herb Stratum (Plot size:)                           |                     |                      |                     | UPL species x5 =                                                |       |
| 1. false lily-of-the-valley (Maianthemum dilatatum) | <u>40</u>           | <u>yes</u>           | FAC                 | Column Totals:(A)                                               | (B)   |
| 2. Pacific bleeding heart (Dicentra formosa)        | <u>20</u>           | <u>ves</u>           | FACU                | Prevalence Index = B/A =                                        |       |
| 3. spotted touch-me-not (Impatiens capensis)        | <u>30</u>           | <u>ves</u>           | FACW                | Hydrophytic Vegetation Indicators:                              |       |
| 4                                                   |                     |                      |                     | 1 – Rapid Test for Hydrophytic Vegetation                       |       |
| 5                                                   |                     |                      |                     | 2 - Dominance Test is >50%                                      |       |
| 6                                                   |                     |                      |                     | $\Box$ 3 - Prevalence Index is $\leq 3.0^1$                     |       |
| 7                                                   |                     |                      |                     | 4 - Morphological Adaptations <sup>1</sup> (Provide supporting  |       |
| 8                                                   |                     |                      |                     | data in Remarks or on a separate sheet)                         |       |
| 9                                                   |                     |                      |                     | 5 - Wetland Non-Vascular Plants <sup>1</sup>                    |       |
| 10                                                  |                     |                      |                     | Problematic Hydrophytic Vegetation <sup>1</sup> (Explain)       |       |
| 11                                                  |                     |                      |                     |                                                                 |       |
| 50% = <u>45</u> , 20% = <u>18</u>                   | <u>90</u>           | = Total Cove         | r                   | be present, unless disturbed or problematic.                    |       |
| Woody Vine Stratum (Plot size:)                     |                     |                      |                     | ···· ··· ··· ··· · · · · · · · · · · ·                          |       |
| 1                                                   |                     |                      |                     |                                                                 |       |
| 2                                                   |                     |                      |                     | Hydrophytic                                                     |       |
| 50% =, 20% =                                        |                     | = Total Cove         | r                   | Present?                                                        |       |
| % Bare Ground in Herb Stratum                       |                     |                      |                     |                                                                 |       |
| Remarks:                                            |                     |                      |                     |                                                                 |       |

#### Project Site: Williams Crossing

#### SOIL

| SOI         | L           |                     |              |               |               |              |                   |                       |                  | S          | ampling l    | Point: <u>B-D</u> | P-3         |        |  |
|-------------|-------------|---------------------|--------------|---------------|---------------|--------------|-------------------|-----------------------|------------------|------------|--------------|-------------------|-------------|--------|--|
| Prof        | ile Descr   | iption: (Describe t | o the dept   | h needed to d | ocument the i | indicator o  | or confirm        | the absenc            | e of indicat     | ors.)      |              |                   |             |        |  |
| D           | epth        | Matrix              |              |               | Rec           | lox Feature  | es                |                       |                  |            |              |                   |             |        |  |
| (incł       | nes)        | Color (moist)       | %            | Color (mo     | ist) %        | , 7          | Гуре <sup>1</sup> | Loc <sup>2</sup>      | Texture          | 9          |              |                   | Remarks     | ;      |  |
|             | 0-2         | <u>10YR 2/2</u>     | 100          |               |               |              |                   |                       | loam             | <u>1</u>   |              |                   |             |        |  |
| á           | <u>2-12</u> | <u>10YR4/1</u>      | <u>90</u>    | 10YR5/3       | <u>3 10</u>   | . <u> </u>   |                   |                       | sandy lo         | <u>bam</u> | <u>redox</u> |                   |             |        |  |
| _           |             |                     |              |               |               |              |                   |                       |                  | _          |              |                   |             |        |  |
| _           |             |                     |              |               |               |              |                   |                       |                  | -          |              |                   |             |        |  |
| _           |             |                     |              |               |               |              |                   |                       |                  | _          |              |                   |             |        |  |
| _           |             |                     |              |               |               |              |                   |                       |                  | _          |              |                   |             |        |  |
| _           |             |                     |              |               |               |              |                   |                       |                  | _          |              |                   |             |        |  |
| _           |             |                     |              |               |               |              |                   |                       |                  | _          |              |                   |             |        |  |
| ¹Тур        | e: C= Co    | ncentration, D=Depl | letion, RM=  | Reduced Matr  | ix, CS=Covere | ed or Coate  | d Sand G          | rains. <sup>2</sup> L | ocation: PL      | =Pore      | Lining, M    | =Matrix           |             |        |  |
| Hydı        | ric Soil Ir | dicators: (Applica  | ble to all L | RRs, unless o | otherwise not | ed.)         |                   |                       | Indi             | cators     | for Prob     | lematic I         | lydric S    | oils³: |  |
|             | Histoso     | (A1)                |              |               | Sandy Redo    | x (S5)       |                   |                       |                  | 2 cr       | m Muck (     | A10)              |             |        |  |
|             | Histic E    | pipedon (A2)        |              |               | Stripped Mat  | trix (S6)    |                   |                       |                  | Red        | d Parent I   | Material (        | ΓF2)        |        |  |
|             | Black H     | istic (A3)          |              |               | Loamy Muck    | y Mineral (  | F1) <b>(exce</b>  | pt MLRA 1)            |                  | Ver        | y Shallov    | v Dark Su         | rface (TF   | 12)    |  |
|             | Hydroge     | en Sulfide (A4)     |              |               | Loamy Gleye   | ed Matrix (F | -2)               |                       |                  | Oth        | er (Expla    | in in Rem         | arks)       |        |  |
| $\boxtimes$ | Deplete     | d Below Dark Surfa  | ce (A11)     |               | Depleted Ma   | trix (F3)    |                   |                       |                  |            |              |                   |             |        |  |
|             | Thick D     | ark Surface (A12)   |              |               | Redox Dark    | Surface (F   | 6)                |                       |                  |            |              |                   |             |        |  |
|             | Sandy M     | /lucky Mineral (S1) |              |               | Depleted Da   | rk Surface   | (F7)              |                       | <sup>3</sup> Ind | icators    | of hydro     | ohytic veg        | etation a   | and    |  |
|             | Sandy 0     | Gleyed Matrix (S4)  |              |               | Redox Depre   | essions (F8  | 3)                |                       | v<br>L           | inless of  | disturbed    | or proble         | matic.      | ι,     |  |
| Rest        | rictive L   | ayer (if present):  |              |               |               |              |                   |                       |                  |            |              |                   |             |        |  |
| Туре        | :           |                     |              |               |               |              |                   |                       |                  |            |              |                   |             |        |  |
| Dept        | h (inches   | ):                  |              |               |               |              | н                 | ydric Soils I         | Present?         |            |              | Yes               | $\boxtimes$ | No     |  |
| Rem         | arks:       |                     |              |               |               |              |                   |                       |                  |            |              |                   |             |        |  |
|             |             |                     |              |               |               |              |                   |                       |                  |            |              |                   |             |        |  |
|             |             |                     |              |               |               |              |                   |                       |                  |            |              |                   |             |        |  |
|             |             |                     |              |               |               |              |                   |                       |                  |            |              |                   |             |        |  |

#### HYDROLOGY

| Wetl            | and Hydrology Indicate                                                                                     | ors:      |          |                    |          |                        |                         |             |                                |                           |             |             |    |  |
|-----------------|------------------------------------------------------------------------------------------------------------|-----------|----------|--------------------|----------|------------------------|-------------------------|-------------|--------------------------------|---------------------------|-------------|-------------|----|--|
| Prima           | ary Indicators (minimum                                                                                    | of one re | equired  | ; check            | all that | apply)                 |                         |             | Sec                            | ondary Indicators (2 or r | more requir | ed)         |    |  |
|                 | Surface Water (A1)                                                                                         |           |          |                    |          | Water-Stained Leave    | es (B9)                 |             |                                | Water-Stained Leaves      | s (B9)      |             |    |  |
|                 | High Water Table (A2)                                                                                      |           |          |                    |          | (except MLRA 1, 2,     | 4A, and 4B)             |             |                                | (MLRA 1, 2, 4A, and       | 4B)         |             |    |  |
| $\boxtimes$     | Saturation (A3)                                                                                            |           |          |                    |          | Salt Crust (B11)       |                         |             | $\boxtimes$                    | Drainage Patterns (B1     | 0)          |             |    |  |
|                 | Water Marks (B1)                                                                                           |           |          |                    |          | Aquatic Invertebrates  | s (B13)                 |             |                                | Dry-Season Water Ta       | ble (C2)    |             |    |  |
|                 | Sediment Deposits (B2                                                                                      | 2)        |          |                    |          | Hydrogen Sulfide Od    | lor (C1)                |             |                                | Saturation Visible on A   | Aerial Imag | ery (C      | 9) |  |
|                 | Drift Deposits (B3)                                                                                        |           |          |                    |          | Oxidized Rhizospher    | es along Living Roots   | s (C3)      | $\bowtie$                      | Geomorphic Position       | (D2)        |             |    |  |
|                 | Algal Mat or Crust (B4                                                                                     | )         |          |                    |          | Presence of Reduced    | d Iron (C4)             |             |                                | Shallow Aquitard (D3)     |             |             |    |  |
|                 | Iron Deposits (B5)                                                                                         |           |          |                    |          | Recent Iron Reduction  | on in Tilled Soils (C6) |             |                                | FAC-Neutral Test (D5      | )           |             |    |  |
|                 | Surface Soil Cracks (E                                                                                     | 86)       |          |                    |          | Stunted or Stresses I  | Plants (D1) (LRR A)     |             | Raised Ant Mounds (D6) (LRR A) |                           |             |             |    |  |
|                 | Inundation Visible on A                                                                                    |           |          | Frost-Heave Hummoc | ks (D7)  |                        |                         |             |                                |                           |             |             |    |  |
|                 | Sparsely Vegetated C                                                                                       | oncave S  | Surface  | (B8)               |          |                        |                         |             |                                |                           |             |             |    |  |
| Field           | Observations:                                                                                              |           |          |                    |          |                        |                         |             |                                |                           |             |             |    |  |
| Surfa           | ce Water Present?                                                                                          | Yes       |          | No                 |          | Depth (inches):        |                         |             |                                |                           |             |             |    |  |
| Wate            | r Table Present?                                                                                           | Yes       |          | No                 |          | Depth (inches):        |                         |             |                                |                           |             |             |    |  |
| Satur<br>(inclu | Water Table Present? Yes L No<br>Saturation Present? Yes X No<br>(includes capillary fringe)               |           |          |                    |          | Depth (inches):        | <u>18</u>               | Wetlar      | nd Hy                          | drology Present?          | Yes         | $\boxtimes$ | No |  |
| Desc            | Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: |           |          |                    |          |                        |                         |             |                                |                           |             |             |    |  |
|                 |                                                                                                            |           |          |                    |          |                        |                         |             |                                |                           |             |             |    |  |
| Rem             | arks: Weather drier                                                                                        | than nor  | mal pric | or to del          | ineatio  | n. See results from Co | orps Antecedent Preci   | ipitation 7 | Tool a                         | ttached to report.        |             |             |    |  |
|                 |                                                                                                            |           |          |                    |          |                        |                         |             |                                |                           |             |             |    |  |
|                 |                                                                                                            |           |          |                    |          |                        |                         |             |                                |                           |             |             |    |  |
|                 |                                                                                                            |           |          |                    |          |                        |                         |             |                                |                           |             |             |    |  |

## WETLAND DETERMINATION DATA FORM – Western Mountains, Valleys, and Coast Region

| Project Site:            | Williams       | Crossi      | ing                 |              |                   | С          | ity/County: | Lace     | ey/Thur | rston              | Sampling D        | Date:  | <u>04/</u>  | 14/202    | <u>21</u> |
|--------------------------|----------------|-------------|---------------------|--------------|-------------------|------------|-------------|----------|---------|--------------------|-------------------|--------|-------------|-----------|-----------|
| Applicant/Owner:         | Three's C      | ompa        | iny                 |              |                   |            |             |          |         | State: WA          | Sampling F        | Point: | <u>B-D</u>  | P-4       |           |
| Investigator(s):         | R. Pratt C     | ). G. F     | Rand                |              |                   |            |             | Se       | ection, | Township, Rang     | ge: <u>S09T18</u> | BNR1W  |             |           |           |
| Landform (hillslope, ter | race, etc.)    | ): <u>c</u> | depression          |              |                   | Local reli | ef (concave | e, conve | ex, non | e): <u>concave</u> |                   | Slop   | be (%):     | <u>2</u>  |           |
| Subregion (LRR):         | <u>A</u>       |             |                     | Lat          | 47.0608           |            |             | Long:    | -122.8  | 8142               |                   | Datum: | WGS8        | <u>84</u> |           |
| Soil Map Unit Name:      | <u>Skipopa</u> | Silt L      | <u>oam</u>          |              |                   |            |             |          |         | NWI class          | sification:       | None   |             |           |           |
| Are climatic / hydrologi | c conditio     | ns on t     | the site typical fo | or this ti   | me of year?       | Yes        | $\boxtimes$ | No       |         | (If no, explain in | n Remarks.)       |        |             |           |           |
| Are Vegetation $\Box$ ,  | Soil           | □,          | or Hydrology        | □, :         | significantly dis | sturbed?   | Are "No     | rmal Ci  | rcumst  | ances" present?    |                   | Yes    | $\boxtimes$ | No        |           |
| Are Vegetation $\Box$ ,  | Soil           | □,          | or Hydrology        | <b>□</b> , ı | naturally proble  | ematic?    | (If need    | ed, exp  | lain an | y answers in Re    | marks.)           |        |             |           |           |

#### SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

| Hydrophytic Vegetation Present? | Yes | No | $\boxtimes$ |                                          |     |    |             |
|---------------------------------|-----|----|-------------|------------------------------------------|-----|----|-------------|
| Hydric Soil Present?            | Yes | No | $\boxtimes$ | Is the Sampled Area<br>within a Wetland? | Yes | No | $\boxtimes$ |
| Wetland Hydrology Present?      | Yes | No | $\boxtimes$ |                                          |     |    |             |
| Remarks:                        |     |    |             |                                          |     |    |             |

| VEGETATION – Use scientific names of plant          | s                   |                      |                     |                                                                                                |              |                |       |
|-----------------------------------------------------|---------------------|----------------------|---------------------|------------------------------------------------------------------------------------------------|--------------|----------------|-------|
| Tree Stratum (Plot size:)                           | Absolute<br>% Cover | Dominant<br>Species? | Indicator<br>Status | Dominance Test Worksheet:                                                                      |              |                |       |
| 1. <u>red alder (Alnus rubra)</u>                   | 40                  | yes                  | FAC                 | Number of Dominant Species                                                                     | 0            |                | (4)   |
| 2. western red cedar (Thuja plicata)                | <u>10</u>           | <u>yes</u>           | FAC                 | That Are OBL, FACW, or FAC:                                                                    | 2            |                | (A)   |
| 3.                                                  |                     |                      |                     | Total Number of Dominant                                                                       | 4            |                |       |
| 4.                                                  |                     |                      |                     | Species Across All Strata:                                                                     | <u>4</u>     |                | (B)   |
| 50% = <u>25</u> , 20% = <u>10</u>                   | <u>50</u>           | = Total Cove         | r                   | Percent of Dominant Species                                                                    | 67           |                | (     |
| Sapling/Shrub Stratum (Plot size:)                  |                     |                      |                     | That Are OBL, FACW, or FAC:                                                                    | 07           |                | (A/D) |
| 1                                                   |                     |                      |                     | Prevalence Index worksheet:                                                                    |              |                |       |
| 2.                                                  |                     |                      |                     | Total % Cover of:                                                                              | Multiply     | by:            |       |
| 3                                                   |                     |                      |                     | OBL species                                                                                    | x1 =         |                |       |
| 4                                                   |                     |                      |                     | FACW species <u>10</u>                                                                         | x2 =         | <u>20</u>      |       |
| 5                                                   |                     |                      |                     | FAC species <u>80</u>                                                                          | x3 =         | 240            |       |
| 50% =, 20% =                                        |                     | = Total Cove         | r                   | FACU species <u>90</u>                                                                         | x4 =         | <u>360</u>     |       |
| Herb Stratum (Plot size:)                           |                     |                      |                     | UPL species                                                                                    | x5 =         |                |       |
| 1. Swordfern (Polystichum munitum)                  | <u>60</u>           | <u>ves</u>           | FACU                | Column Totals: <u>180</u> (A)                                                                  |              | <u>620</u> (B) |       |
| 2. Pacific bleeding heart (Dicentra formosa)        | <u>30</u>           | <u>ves</u>           | FACU                | Prevalence Index = B/A                                                                         | = <u>3.4</u> |                |       |
| 3. spotted touch-me-not (Impatiens capensis)        | <u>10</u>           | <u>no</u>            | FACW                | Hydrophytic Vegetation Indicators:                                                             |              |                |       |
| 4. false lily-of-the-valley (Maianthemum dilatatum) | <u>5</u>            | <u>no</u>            | FAC                 | 1 – Rapid Test for Hydrophytic Vegetat                                                         | tion         |                |       |
| 5. stinging nettle (Urtica dioica)                  | <u>25</u>           | <u>no</u>            | FAC                 | 2 - Dominance Test is >50%                                                                     |              |                |       |
| 6                                                   |                     |                      |                     | $\Box$ 3 - Prevalence Index is $\leq 3.0^1$                                                    |              |                |       |
| 7                                                   | . <u> </u>          |                      |                     | 4 - Morphological Adaptations <sup>1</sup> (Provid                                             | e supporti   | ng             |       |
| 8                                                   |                     |                      |                     | data in Remarks or on a separate s                                                             | heet)        |                |       |
| 9                                                   |                     |                      |                     | 5 - Wetland Non-Vascular Plants <sup>1</sup>                                                   |              |                |       |
| 10                                                  |                     |                      |                     | Problematic Hydrophytic Vegetation <sup>1</sup> (B                                             | Explain)     |                |       |
| 11                                                  |                     |                      |                     |                                                                                                |              |                |       |
| 50% = <u>45</u> , 20% = <u>18</u>                   | <u>130</u>          | = Total Cove         | r                   | 'Indicators of hydric soil and wetland hydrolo<br>be present, unless disturbed or problematic. | gy must      |                |       |
| Woody Vine Stratum (Plot size:)                     |                     |                      |                     |                                                                                                |              |                |       |
| 1                                                   |                     |                      |                     |                                                                                                |              |                |       |
| 2                                                   |                     |                      |                     | Hydrophytic                                                                                    | 1            | No             |       |
| 50% =, 20% =                                        |                     | = Total Cove         | r                   | Present?                                                                                       | J.           | NU             |       |
| % Bare Ground in Herb Stratum                       |                     |                      |                     |                                                                                                |              |                |       |
| Remarks:                                            |                     |                      |                     |                                                                                                |              |                |       |

#### Project Site: Williams Crossing

#### SOIL

| SOIL                     |                       |               |               |           |              |                      |                        |                  | Sampling                | Point: <u>B-D</u> | <u> P-4</u> |                      |             |
|--------------------------|-----------------------|---------------|---------------|-----------|--------------|----------------------|------------------------|------------------|-------------------------|-------------------|-------------|----------------------|-------------|
| Profile Desc             | ription: (Describe to | o the depth   | needed to d   | ocument   | the indica   | tor or confi         | rm the absence         | e of indicat     | ors.)                   |                   |             |                      |             |
| Depth                    | Matrix                |               |               |           | Redox Fe     | atures               |                        |                  |                         |                   |             |                      |             |
| (inches)                 | Color (moist)         | %             | Color (mo     | oist)     | %            | Type <sup>1</sup>    | Loc <sup>2</sup>       | Texture          | )                       |                   | Remarks     | 3                    |             |
| <u>0-12</u>              | <u>10YR 4/3</u>       | <u>70</u>     | 10YR3/3       | 3         | <u>30</u>    |                      |                        | loam             | <u> </u>                |                   |             |                      |             |
|                          |                       |               |               |           |              |                      |                        |                  |                         |                   |             |                      |             |
|                          |                       |               |               |           |              |                      |                        |                  |                         |                   |             |                      |             |
|                          |                       |               |               |           |              |                      |                        |                  |                         |                   |             |                      |             |
|                          |                       |               |               |           |              |                      |                        |                  |                         |                   |             |                      |             |
|                          |                       |               |               |           |              |                      |                        |                  |                         |                   |             |                      |             |
|                          |                       |               |               |           |              |                      |                        |                  |                         |                   |             |                      |             |
|                          |                       |               |               |           |              |                      |                        |                  |                         |                   |             |                      |             |
| <sup>1</sup> Type: C= Co | oncentration, D=Depl  | etion, RM=F   | Reduced Matr  | ix, CS=C  | overed or C  | coated Sand          | Grains. <sup>2</sup> L | ocation: PL      | =Pore Lining, I         | M=Matrix          |             |                      |             |
| Hydric Soil              | Indicators: (Applica  | ble to all Li | RRs, unless o | otherwise | e noted.)    |                      |                        | Indi             | cators for Pro          | blematic I        | Hydric S    | ioils <sup>3</sup> : |             |
| Histos                   | ol (A1)               |               |               | Sandy I   | Redox (S5)   |                      |                        |                  | 2 cm Muck               | (A10)             |             |                      |             |
| Histic I                 | Epipedon (A2)         |               |               | Strippe   | d Matrix (Se | 6)                   |                        |                  | Red Parent              | t Material (      | TF2)        |                      |             |
| Black I                  | Histic (A3)           |               |               | Loamy     | Mucky Mine   | eral (F1) <b>(ex</b> | cept MLRA 1)           |                  | Very Shallo             | w Dark Su         | rface (TI   | F12)                 |             |
| Hydrog                   | gen Sulfide (A4)      |               |               | Loamy     | Gleyed Mat   | trix (F2)            |                        |                  | Other (Exp              | lain in Rem       | narks)      |                      |             |
| Deplet                   | ed Below Dark Surfa   | ce (A11)      |               | Deplete   | ed Matrix (F | 3)                   |                        |                  |                         |                   |             |                      |             |
| Thick [                  | Dark Surface (A12)    |               |               | Redox     | Dark Surfac  | ce (F6)              |                        |                  |                         |                   |             |                      |             |
| Sandy                    | Mucky Mineral (S1)    |               |               | Deplete   | ed Dark Sur  | face (F7)            |                        | <sup>3</sup> Ind | icators of hydrological | ophytic veg       | etation a   | and<br>t             |             |
| Sandy                    | Gleyed Matrix (S4)    |               |               | Redox     | Depression   | s (F8)               |                        | ۰<br>د           | inless disturbe         | d or proble       | matic.      | ι,                   |             |
| Restrictive I            | _ayer (if present):   |               |               |           |              |                      |                        |                  |                         |                   |             |                      |             |
| Туре:                    |                       |               |               |           |              |                      |                        |                  |                         |                   |             |                      |             |
| Depth (inche             | s):                   |               |               |           |              |                      | Hydric Soils F         | Present?         |                         | Yes               |             | No                   | $\boxtimes$ |
| Remarks:                 |                       |               |               |           |              |                      |                        |                  |                         |                   |             |                      |             |
|                          |                       |               |               |           |              |                      |                        |                  |                         |                   |             |                      |             |
|                          |                       |               |               |           |              |                      |                        |                  |                         |                   |             |                      |             |
|                          |                       |               |               |           |              |                      |                        |                  |                         |                   |             |                      |             |

#### HYDROLOGY

| Wetl            | rimary Indicators:                                                                                         |            |          |         |             |                                            |        |                      |                           |             |        |    |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------|------------|----------|---------|-------------|--------------------------------------------|--------|----------------------|---------------------------|-------------|--------|----|--|--|
| Prima           | ary Indicators (minimum                                                                                    | of one re  | equired  | ; check | all that    | t apply)                                   |        | Sec                  | ondary Indicators (2 or n | nore requir | ed)    |    |  |  |
|                 | Surface Water (A1)                                                                                         |            |          |         |             | Water-Stained Leaves (B9)                  |        |                      | Water-Stained Leaves      | (B9)        |        |    |  |  |
|                 | High Water Table (A2                                                                                       | )          |          |         |             | (except MLRA 1, 2, 4A, and 4B)             |        |                      | (MLRA 1, 2, 4A, and 4     | 4B)         |        |    |  |  |
|                 | Saturation (A3)                                                                                            |            |          |         |             | Salt Crust (B11)                           |        |                      | Drainage Patterns (B1     | 0)          |        |    |  |  |
|                 | Water Marks (B1)                                                                                           |            |          |         |             | Aquatic Invertebrates (B13)                |        |                      | Dry-Season Water Tak      | ble (C2)    |        |    |  |  |
|                 | Sediment Deposits (B                                                                                       | 2)         |          |         |             | Hydrogen Sulfide Odor (C1)                 |        |                      | Saturation Visible on A   | Aerial Imag | ery (C | 9) |  |  |
|                 | Drift Deposits (B3)                                                                                        |            |          |         |             | Oxidized Rhizospheres along Living Roots ( | (C3)   |                      | Geomorphic Position (     | D2)         |        |    |  |  |
|                 | Algal Mat or Crust (B4                                                                                     | ł)         |          |         |             | Presence of Reduced Iron (C4)              |        |                      | Shallow Aquitard (D3)     |             |        |    |  |  |
|                 | Iron Deposits (B5)                                                                                         |            |          |         |             | Recent Iron Reduction in Tilled Soils (C6) |        |                      | FAC-Neutral Test (D5)     | )           |        |    |  |  |
|                 | Surface Soil Cracks (E                                                                                     | 36)        |          |         |             | Stunted or Stresses Plants (D1) (LRR A)    |        | Raised Ant Mounds (D | 06) <b>(LRR A</b>         | )           |        |    |  |  |
|                 | Inundation Visible on                                                                                      | Aerial Ima | agery (I | 37)     |             | Other (Explain in Remarks)                 |        |                      | Frost-Heave Hummocl       | ks (D7)     |        |    |  |  |
|                 | Sparsely Vegetated C                                                                                       | oncave S   | Surface  | (B8)    |             |                                            |        |                      |                           |             |        |    |  |  |
| Field           | Observations:                                                                                              |            |          |         |             |                                            |        |                      |                           |             |        |    |  |  |
| Surfa           | ce Water Present?                                                                                          | Yes        |          | No      | $\boxtimes$ | Depth (inches):                            |        |                      |                           |             |        |    |  |  |
| Wate            | r Table Present?                                                                                           | Yes        |          | No      | $\boxtimes$ | Depth (inches):                            |        |                      |                           |             |        |    |  |  |
| Satur<br>(inclu | Water Table Present? Yes C No<br>Saturation Present? Yes C No<br>(includes capillary fringe) Yes C No      |            |          |         | $\boxtimes$ | Depth (inches):                            | Wetlan | d Hyd                | trology Present?          | Yes         |        | No |  |  |
| Desc            | Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: |            |          |         |             |                                            |        |                      |                           |             |        |    |  |  |
|                 |                                                                                                            |            |          |         |             |                                            |        |                      |                           |             |        |    |  |  |
| Rem             | arks:                                                                                                      |            |          |         |             |                                            |        |                      |                           |             |        |    |  |  |
|                 |                                                                                                            |            |          |         |             |                                            |        |                      |                           |             |        |    |  |  |
|                 |                                                                                                            |            |          |         |             |                                            |        |                      |                           |             |        |    |  |  |
|                 |                                                                                                            |            |          |         |             |                                            |        |                      |                           |             |        |    |  |  |





| Coordinates                      | 47.060848, -122.812763      | 30 |
|----------------------------------|-----------------------------|----|
| Observation Date                 | 2021-04-14                  |    |
| Elevation (ft)                   | 76.52                       |    |
| Drought Index (PDSI)             | Incipient drought (2021-03) |    |
| WebWIMP H <sub>2</sub> O Balance | Wet Season                  |    |

| 30 Days Ending | 30 <sup>th</sup> %ile(in) | 70 <sup>th</sup> %ile(in) | Observed (in) | Wetness Condition | Condition Value | Month Weight | Product               |
|----------------|---------------------------|---------------------------|---------------|-------------------|-----------------|--------------|-----------------------|
| 2021-04-14     | 3.183071                  | 5.556299                  | 2.574803      | Dry               | 1               | 3            | 3                     |
| 2021-03-15     | 3.622047                  | 7.141733                  | 4.948819      | Normal            | 2               | 2            | 4                     |
| 2021-02-13     | 4.346063                  | 7.610236                  | 5.775591      | Normal            | 2               | 1            | 2                     |
| Result         |                           |                           |               |                   |                 |              | Drier than Normal - 9 |



Figure and tables made by the Antecedent Precipitation Tool Version 1.0

Written by Jason Deters U.S. Army Corps of Engineers

| Weather Station Name | Coordinates        | Elevation (ft) | Distance (mi) | Elevation $\Delta$ | Weighted $\Delta$ | Days (Normal) | Days (Antecedent) |
|----------------------|--------------------|----------------|---------------|--------------------|-------------------|---------------|-------------------|
| OLYMPIA AP           | 46.9733, -122.9033 | 187.992        | 7.401         | 111.472            | 4.156             | 11350         | 90                |
| SHELTON              | 47.2, -123.1       | 21.982         | 16.575        | 54.538             | 8.363             | 2             | 0                 |
| WAUNA 3 W            | 47.3725, -122.7028 | 17.06          | 22.143        | 59.46              | 11.281            | 1             | 0                 |

- Daily Total
- 30-Day Rolling Total
  - 30-Year Normal Range

| Jun  | Jul  | Aug  |
|------|------|------|
| 2021 | 2021 | 2021 |

## **Appendix B** Wetland Rating Form

This page intentionally left blank.

## **RATING SUMMARY – Western Washington**

Name of wetland (or ID #): \_\_\_\_\_\_ Williams Crossing - Wetland A/B \_\_\_\_\_ Date of site visit: \_\_\_\_\_\_ 4/14/21

Rated by G. Rand \_\_\_\_\_\_ Trained by Ecology?\_\_ Yes X\_No Date of training 2005

**HGM Class used for rating** Depressional Wetland has multiple HGM classes? X Y \_\_\_\_N

**NOTE:** Form is not complete without the figures requested (figures can be combined). Source of base aerial photo/map <u>Google Earth Pro/Thurston County GIS</u>

**OVERALL WETLAND CATEGORY** []] (based on functions X or special characteristics\_\_\_)

## 1. Category of wetland based on FUNCTIONS

\_\_\_\_Category I – Total score = 23 - 27

\_\_\_\_Category II – Total score = 20 - 22

**Category III** – Total score = 16 - 19

Category IV – Total score = 9 - 15

| FUNCTION                       | Improving<br>Water Quality |   | Hydrologic |   | Habitat |   |   |   |   |     |
|--------------------------------|----------------------------|---|------------|---|---------|---|---|---|---|-----|
| Circle the appropriate ratings |                            |   |            |   |         |   |   |   |   |     |
| Site Potential                 | Н                          | M | L          | Н | M       | L | Н | Μ |   |     |
| Landscape Potential            | Н                          | M | L          | Н | Μ       |   | H | Μ | L |     |
| Value                          | H                          | Μ | L          | Н | Μ       |   | H | Μ | L | тот |
| Score Based on<br>Ratings      |                            | 7 |            |   | 4       |   |   | 7 |   | 18  |

Score for each function based on three ratings (order of ratings is not important)

9 = H,H,H 8 = H,H,M 7 = H,H,L 7 = H,M,M 6 = H,M,L 6 = M,M,M 5 = H,L,L 5 = M,M,L 4 = M,L,L

3 = L,L,L

## 2. Category based on SPECIAL CHARACTERISTICS of wetland

| CHARACTERISTIC                     | CAT  | CATEGORY |  |  |  |
|------------------------------------|------|----------|--|--|--|
| Estuarine                          | I II |          |  |  |  |
| Wetland of High Conservation Value | I    |          |  |  |  |
| Bog                                |      | Ι        |  |  |  |
| Mature Forest                      | Ι    |          |  |  |  |
| Old Growth Forest                  | I    |          |  |  |  |
| Coastal Lagoon                     |      | II       |  |  |  |
| Interdunal                         |      | III IV   |  |  |  |
| None of the above                  |      | NA       |  |  |  |

# Maps and figures required to answer questions correctly for Western Washington

## **Depressional Wetlands**

| Map of:                                                                        | To answer questions: | Figure # |
|--------------------------------------------------------------------------------|----------------------|----------|
| Cowardin plant classes                                                         | D 1.3, H 1.1, H 1.4  | 1        |
| Hydroperiods                                                                   | D 1.4, H 1.2         | 1        |
| Location of outlet (can be added to map of hydroperiods)                       | D 1.1, D 4.1         | 1        |
| Boundary of area within 150 ft of the wetland (can be added to another figure) | D 2.2, D 5.2         | 2        |
| Map of the contributing basin                                                  | D 4.3, D 5.3         | 4        |
| 1 km Polygon: Area that extends 1 km from entire wetland edge - including      | H 2.1, H 2.2, H 2.3  | 2        |
| polygons for accessible habitat and undisturbed habitat                        |                      | 5        |
| Screen capture of map of 303(d) listed waters in basin (from Ecology website)  | D 3.1, D 3.2         | 5        |
| Screen capture of list of TMDLs for WRIA in which unit is found (from web)     | D 3.3                | 6        |

## **Riverine Wetlands**

| Map of:                                                                        | To answer questions: | Figure # |
|--------------------------------------------------------------------------------|----------------------|----------|
| Cowardin plant classes                                                         | H 1.1, H 1.4         |          |
| Hydroperiods                                                                   | H 1.2                |          |
| Ponded depressions                                                             | R 1.1                |          |
| Boundary of area within 150 ft of the wetland (can be added to another figure) | R 2.4                |          |
| Plant cover of trees, shrubs, and herbaceous plants                            | R 1.2, R 4.2         |          |
| Width of unit vs. width of stream (can be added to another figure)             | R 4.1                |          |
| Map of the contributing basin                                                  | R 2.2, R 2.3, R 5.2  |          |
| 1 km Polygon: Area that extends 1 km from entire wetland edge - including      | Н 2.1, Н 2.2, Н 2.3  |          |
| polygons for accessible habitat and undisturbed habitat                        |                      |          |
| Screen capture of map of 303(d) listed waters in basin (from Ecology website)  | R 3.1                |          |
| Screen capture of list of TMDLs for WRIA in which unit is found (from web)     | R 3.2, R 3.3         |          |

### Lake Fringe Wetlands

| Map of:                                                                        | To answer questions:       | Figure # |
|--------------------------------------------------------------------------------|----------------------------|----------|
| Cowardin plant classes                                                         | L 1.1, L 4.1, H 1.1, H 1.4 |          |
| Plant cover of trees, shrubs, and herbaceous plants                            | L 1.2                      |          |
| Boundary of area within 150 ft of the wetland (can be added to another figure) | L 2.2                      |          |
| 1 km Polygon: Area that extends 1 km from entire wetland edge - including      | Н 2.1, Н 2.2, Н 2.3        |          |
| polygons for accessible habitat and undisturbed habitat                        |                            |          |
| Screen capture of map of 303(d) listed waters in basin (from Ecology website)  | L 3.1, L 3.2               |          |
| Screen capture of list of TMDLs for WRIA in which unit is found (from web)     | L 3.3                      |          |

## Slope Wetlands

| Map of:                                                                       | To answer questions: | Figure # |
|-------------------------------------------------------------------------------|----------------------|----------|
| Cowardin plant classes                                                        | H 1.1, H 1.4         |          |
| Hydroperiods                                                                  | H 1.2                |          |
| Plant cover of dense trees, shrubs, and herbaceous plants                     | S 1.3                |          |
| Plant cover of dense, rigid trees, shrubs, and herbaceous plants              | S 4.1                |          |
| (can be added to figure above)                                                |                      |          |
| Boundary of 150 ft buffer (can be added to another figure)                    | S 2.1, S 5.1         |          |
| 1 km Polygon: Area that extends 1 km from entire wetland edge - including     | H 2.1, H 2.2, H 2.3  |          |
| polygons for accessible habitat and undisturbed habitat                       |                      |          |
| Screen capture of map of 303(d) listed waters in basin (from Ecology website) | S 3.1, S 3.2         |          |
| Screen capture of list of TMDLs for WRIA in which unit is found (from web)    | S 3.3                |          |

## HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

1. Are the water levels in the entire unit usually controlled by tides except during floods?

NO – go to 2

**YES** – the wetland class is **Tidal Fringe** – go to 1.1

1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?

NO – Saltwater Tidal Fringe (Estuarine) If your wetland can be classified as a Freshwater Tidal Fringe use the forms for **Riverine** wetlands. If it is Saltwater Tidal Fringe it is an **Estuarine** wetland and is not scored. This method **cannot** be used to score functions for estuarine wetlands.

2. The entire wetland unit is flat and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

NO – go to 3 **YES** – The wetland class is **Flats** If your wetland can be classified as a Flats wetland, use the form for **Depressional** wetlands.

3. Does the entire wetland unit **meet all** of the following criteria? \_\_\_\_The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size; \_\_\_\_At least 30% of the open water area is deeper than 6.6 ft (2 m).

(NO – go to 4)

**YES** – The wetland class is **Lake Fringe** (Lacustrine Fringe)

- 4. Does the entire wetland unit **meet all** of the following criteria?
  - \_\_\_\_\_The wetland is on a slope (*slope can be very gradual*).
  - The water flows through the wetland in one direction (unidirectional) and usually comes from seeps. It may flow subsurface, as sheetflow, or in a swale without distinct banks,
    - The water leaves the wetland **without being impounded**.

NO - go to 5

**YES –** The wetland class is **Slope** 

**NOTE**: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

- 5. Does the entire wetland unit **meet all** of the following criteria?
  - The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river.
  - \_\_\_\_The overbank flooding occurs at least once every 2 years.

## **YES - Freshwater Tidal Fringe**
Wetland name or number <u>A/B</u>



6. Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? *This means that any outlet, if present, is higher than the interior of the wetland.* 

NO – go to 7

YES - The wetland class is Depressional

7. Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high groundwater in the area. The wetland may be ditched, but has no obvious natural outlet.



YES – The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

**NOTE**: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

| HGM classes within the wetland unit   | HGM class to  |
|---------------------------------------|---------------|
| being rated                           | use in rating |
| Slope + Riverine                      | Riverine      |
| Slope + Depressional                  | Depressional  |
| Slope + Lake Fringe                   | Lake Fringe   |
| Depressional + Riverine along stream  | Depressional  |
| within boundary of depression         |               |
| Depressional + Lake Fringe            | Depressional  |
| Riverine + Lake Fringe                | Riverine      |
| Salt Water Tidal Fringe and any other | Treat as      |
| class of freshwater wetland           | ESTUARINE     |

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

Small areas of sloped wetland along the edges of the units transition into the larger main depressional portion of the wetland.

| DEPRESSIONAL AND FLATS WETLANDS                                                                                                                                                                                   |                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Water Quality Functions - Indicators that the site functions to improve water quality                                                                                                                             |                |  |
| D 1.0. Does the site have the potential to improve water quality?                                                                                                                                                 |                |  |
| D 1.1. <u>Characteristics of surface water outflows from the wetland</u> :<br>Wetland is a depression or flat depression (QUESTION 7 on key) with no surface water leaving it (no outle                           | et).           |  |
| points<br>Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing outlet<br>points                                                                                       | 2              |  |
| Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing points<br>Wetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch. points | 5 = 1<br>5 = 1 |  |
| D 1.2. The soil 2 in below the surface (or duff layer) is true clay or true organic (use NRCS definitions). Yes = 4 N                                                                                             | o = 0 0        |  |
| D 1.3. Characteristics and distribution of persistent plants (Emergent, Scrub-shrub, and/or Forested Cowardin cl                                                                                                  | asses):        |  |
| Wetland has persistent, ungrazed, plants > 95% of area                                                                                                                                                            | 5=5 5          |  |
| Wetland has persistent, ungrazed, plants > $\frac{1}{2}$ of area points                                                                                                                                           | 5 = 3          |  |
| Wetland has persistent, ungrazed plants $> \frac{1}{10}$ of area points                                                                                                                                           | 5 = 1          |  |
| Wetland has persistent, ungrazed plants <1/10 of area points                                                                                                                                                      | 5 = 0          |  |
| D 1.4. <u>Characteristics of seasonal ponding or inundation</u> :<br>This is the area that is ponded for at least 2 months. See description in manual.                                                            |                |  |
| Area seasonally ponded is > ½ total area of wetland points                                                                                                                                                        | s = 4 <b>0</b> |  |
| Area seasonally ponded is > ¼ total area of wetland points                                                                                                                                                        | 5 = 2          |  |
| Area seasonally ponded is < ¼ total area of wetland points                                                                                                                                                        | 5 = 0          |  |
| Total for D 1 Add the points in the boxes ab                                                                                                                                                                      | oove 7         |  |
| <b>Rating of Site Potential</b> If score is: $12-16 = H \times 6-11 = M = 0-5 = L$ Record the rating on the                                                                                                       | ne first page  |  |

| D 2.0. Does the landscape have the potential to support the water quality function of the site?                                            |   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0                                                                 | 0 |  |
| D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = $1 \sqrt{N} = 0$                     | 0 |  |
| D 2.3. Are there septic systems within 250 ft of the wetland? House NW of Wetland A and houses east (Yes = 1) No = 0                       | 1 |  |
| D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in questions D 2.1-D 2.3?<br>SourceYes = 1 No = 0 | 0 |  |
| Total for D 2Add the points in the boxes above                                                                                             | 1 |  |

**Rating of Landscape Potential** If score is: 3 or 4 = H  $\times$  1 or 2 = M 0 = L Record the rating on the first page

| D 3.0. Is the water quality improvement provided by the site valuable to society?                                                                                                                      |                        |                                               |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------|---|
| D 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, riv<br>303(d) list?                                                                                                        | ver, lake, or marine w | ater that is on the $\sqrt[6]{es} = 1$ No = 0 | 1 |
| D 3.2. Is the wetland in a basin or sub-basin where an aquatic resource is o                                                                                                                           | n the 303(d) list?     | Yes = 1 No = 0                                | 1 |
| D 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality (answer YES if there is a TMDL for the basin in which the unit is found)? (Yes = 2) No = 0 |                        | 2                                             |   |
| Total for D 3                                                                                                                                                                                          | Add the points         | in the boxes above                            | 4 |
| Rating of Value If score is: X 2-4 = H 1 = M 0 = L                                                                                                                                                     | Record the rati        | ng on the first page                          |   |

| DEPRESSIONAL AND FLATS WETLANDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|
| Hydrologic Functions - Indicators that the site functions to reduce flooding and stream degradation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |  |  |
| D 4.0. Does the site have the potential to reduce flooding and erosion?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |  |  |
| D 4.1. <u>Characteristics of surface water outflows from the wetland</u> :<br>Wetland is a depression or flat depression with no surface water leaving it (no outlet) points = 4<br>Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing outletpoints = 2<br>Wetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch points = 1<br>Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing points = 0                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) 2        |  |  |
| D 4.2. Depth of storage during wet periods: Estimate the height of ponding above the bottom of the outlet. For wetlands<br>with no outlet, measure from the surface of permanent water or if dry, the deepest part.<br>Marks of ponding are 3 ft or more above the surface or bottom of outlet<br>Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet<br>Marks are at least 0.5 ft to < 2 ft from surface or bottom of outlet<br>The wetland is a "headwater" wetland<br>Wetland is flat but has small depressions on the surface that trap water<br>Marks of ponding less than 0.5 ft (6 in)                                                                                                                                                                                                                                                                                                                                                    | 3          |  |  |
| D 4.3. <u>Contribution of the wetland to storage in the watershed</u> : <i>Estimate the ratio of the area of upstream basin contributing surface water to the wetland to the area of the wetland unit itself.</i><br>The area of the basin is less than 10 times the area of the unit points = 5<br>The area of the basin is 10 to 100 times the area of the unit points = 3<br>The area of the basin is more than 100 times the area of the unit points = 0<br>Entire wetland is in the Flats class points = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3          |  |  |
| Total for D 4Add the points in the boxes above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8          |  |  |
| <b>Rating of Site Potential</b> If score is: $12-16 = H \times 6-11 = M = 0-5 = L$ Record the rating on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | first page |  |  |
| D 5.0. Does the landscape have the potential to support hydrologic functions of the site?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |  |  |
| D 5.1. Does the wetland receive stormwater discharges? Yes = $1 \sqrt{N} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0          |  |  |
| D 5.2. Is >10% of the area within 150 ft of the wetland in land uses that generate excess runoff? Yes = 1 $(0 = 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0          |  |  |
| D 5.3. Is more than 25% of the contributing basin of the wetland covered with intensive human land uses (residential at >1 residence/ac, urban, commercial, agriculture, etc.)? Yes = 1 No = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0          |  |  |
| Total for D 5Add the points in the boxes above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0          |  |  |
| <b>Rating of Landscape Potential</b> If score is: $3 = H$ 1 or $2 = M$ $X = 0 = L$ Record the rating on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | first page |  |  |
| D 6.0. Are the hydrologic functions provided by the site valuable to society?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |  |  |
| <ul> <li>D 6.1. <u>The unit is in a landscape that has flooding problems</u>. <i>Choose the description that best matches conditions around the wetland unit being rated</i>. <i>Do not add points</i>. <i>Choose the highest score if more than one condition is met</i>. The wetland captures surface water that would otherwise flow down-gradient into areas where flooding has damaged human or natural resources (e.g., houses or salmon redds): <ul> <li>Flooding occurs in a sub-basin that is immediately down-gradient of unit.</li> <li>Surface flooding problems are in a sub-basin farther down-gradient.</li> <li>points = 1</li> <li>Flooding from groundwater is an issue in the sub-basin.</li> <li>points = 1</li> <li>The existing or potential outflow from the wetland is so constrained by human or natural conditions that the water stored by the wetland cannot reach areas that flood. <i>Explain why</i> points = 0</li> </ul> </li> </ul> | 0          |  |  |
| points = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |  |  |
| D 6.2. Has the site been identified as important for flood storage or flood conveyance in a regional flood control plan?<br>Yes = 2 No = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0          |  |  |
| Total for D 6Add the points in the boxes above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0          |  |  |
| <b>Rating of Value</b> If score is: $2-4 = H$ $1 = M$ $X = 0 = L$ Record the rating on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | first page |  |  |

| These questions apply to wetlands of all HGM classes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| HABITAT FUNCTIONS - Indicators that site functions to provide important habitat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| H 1.0. Does the site have the potential to provide habitat?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of % ac or more than 10% of the unit if it is smaller than 2.5 ac. Add the number of structures checked.        Aquatic bed       4 structures or more: points = 4        Aquatic bed       3 structures: points = 2        Scrub-shrub (areas where shrubs have > 30% cover)       2 structures: points = 1        X Forested (areas where trees have > 30% cover)       1 structure: points = 0         If the unit has a Forested class, check if:      X The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/ground-cover)         that each cover 20% within the Forested polygon | 1 |
| H 1.2. Hydroperiods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland or ¼ ac to count (see text for descriptions of hydroperiods).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 |
| H 1.3. Richness of plant species<br>Count the number of plant species in the wetland that cover at least 10 ft <sup>2</sup> .<br>Different patches of the same species can be combined to meet the size threshold and you do not have to name<br>the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canadian thistle<br>If you counted: > 19 species<br>5 - 19 species<br>< 5 species<br>                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 |
| H 1.4. Interspersion of habitats<br>Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or<br>the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. <i>If you</i><br><i>have four or more plant classes or three classes and open water, the rating is always high.</i><br>None = 0 points<br>Low = 1 point<br>Continuous forest habitat throughout<br>wetland.<br>All three diagrams<br>in this row<br>are <b>HIGH</b> = 3points                                                                                                                                                                                                                                                                                                                    | 0 |

Wetland name or number <u>A/B</u>

| H 1.5. Special habitat features:                                                                                                                                                                                                   |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Check the habitat features that are present in the wetland. The number of checks is the number of points.                                                                                                                          |   |
| X Large, downed, woody debris within the wetland (> 4 in diameter and 6 ft long).                                                                                                                                                  |   |
| X Standing snags (dbh > 4 in) within the wetland                                                                                                                                                                                   |   |
| Undercut banks are present for at least 6.6 ft (2 m) <b>and/or</b> overhanging plants extends at least 3.3 ft (1 m) over a stream (or ditch) in, or contiguous with the wetland, for at least 33 ft (10 m)                         | 3 |
| Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet weathered where wood is exposed) |   |
| At least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas that are permanently or seasonally inundated <i>(structures for egg-laying by amphibians)</i>                                               |   |
| X Invasive plants cover less than 25% of the wetland area in every stratum of plants (see H 1.1 for list of strata)                                                                                                                |   |
| Total for H 1Add the points in the boxes above                                                                                                                                                                                     | 6 |
| N.                                                                                                                                                                                                                                 |   |

Rating of Site Potential If score is: \_\_\_15-18 = H \_\_\_7-14 = M X\_0-6 = L

Record the rating on the first page

- 1

| H 2.0. Does the landscape have the potential to support the habitat functions of the site?                                                                                                                                                               |                                                                                                                                                                                                                                                      |                                                                |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------|
| H 2.1. Accessible habitat (include <i>only</i><br><i>Calculate:</i> % undisturn<br>If total accessible habitat is:<br>> <sup>1</sup> / <sub>3</sub> (33.3%) of 1 km Polygon<br>20-33% of 1 km Polygon<br>10-19% of 1 km Polygon<br>< 10% of 1 km Polygon | whabitat that directly abuts wetland unit).<br>bed habitat $33 + [(\% \text{ moderate and low intensity land uses})/2] 4 358 ac - accessible undisturbed = 33% 92 ac - accessible low/moderate = 8% Area of 1km circle around wetlands = 1083 acres$ | = 37 % points = 3 points = 2 points = 1 points = 0             | 3            |
| H 2.2. Undisturbed habitat in 1 km Pc<br><i>Calculate:</i> % undisturbed<br>Undisturbed habitat > 50% of F<br>Undisturbed habitat 10-50% ar<br>Undisturbed habitat 10-50% ar<br>Undisturbed habitat < 10% of 1                                           | blygon around the wetland.<br>bed habitat <u>47</u> + [(% moderate and low intensity land uses)/2] <u>5</u><br>Polygon 509 ac und./1083 = 47%<br>ind in 1-3 patches 111 ac. low/mod/1083 = 10%<br>it m Polygon                                       | = 52 %<br>points = 3<br>points = 2<br>points = 1<br>points = 0 | 3            |
| H 2.3. Land use intensity in 1 km Poly<br>> 50% of 1 km Polygon is high i<br>≤ 50% of 1 km Polygon is high i                                                                                                                                             | gon: If<br>ntensity land use<br>ntensity                                                                                                                                                                                                             | points = (- 2)<br>points = 0                                   | 0            |
| Total for H 2                                                                                                                                                                                                                                            | Add the points in the                                                                                                                                                                                                                                | e boxes above                                                  | 6            |
| <b>Rating of Landscape Potential</b> If score is: $\times$ 4-6 = H 1-3 = M<br>- < 1 = L Record the rating on the                                                                                                                                         |                                                                                                                                                                                                                                                      |                                                                | e first page |

| H 3.0. Is the habitat provided by the site valuable to society?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <ul> <li>H 3.1. Does the site provide habitat for species valued in laws, regulations, or policies? <i>Choose only the highest score that applies to the wetland being rated.</i></li> <li>Site meets ANY of the following criteria: points = 2</li> <li>It has 3 or more priority habitats within 100 m (see next page)</li> <li>It provides habitat for Threatened or Endangered species (any plant or animal on the state or federal lists)</li> <li>It is mapped as a location for an individual WDFW priority species</li> <li>It is a Wetland of High Conservation Value as determined by the Department of Natural Resources</li> <li>It has been categorized as an important habitat site in a local or regional comprehensive plan, in a Shoreline Master Plan, or in a watershed plan</li> <li>Site has 1 or 2 priority habitats (listed on next page) within 100 m</li> </ul> | 2              |
| Site does not meet any of the criteria above points = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| Rating of Value If score is: X 2 = H 1 = M 0 = L Record the rating on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the first page |

#### Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

### **WDFW Priority Habitats**

<u>Priority habitats listed by WDFW</u> (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. <u>http://wdfw.wa.gov/publications/00165/wdfw00165.pdf</u> or access the list from here: <u>http://wdfw.wa.gov/conservation/phs/list/</u>)

Count how many of the following priority habitats are within 330 ft (100 m) of the wetland unit: **NOTE:** This question is independent of the land use between the wetland unit and the priority habitat.

- Aspen Stands: Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
- **Biodiversity Areas and Corridors**: Areas of habitat that are relatively important to various species of native fish and wildlife (*full descriptions in WDFW PHS report*).
- Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
- ✓ Old-growth/Mature forests: <u>Old-growth west of Cascade crest</u> Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in (81 cm) dbh or > 200 years of age. <u>Mature forests</u> Stands with average diameters exceeding 21 in (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.
- **Oregon White Oak:** Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (*full descriptions in WDFW PHS report p. 158 see web link above*).
- **Riparian**: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- Westside Prairies: Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie (*full descriptions in WDFW PHS report p. 161 see web link above*).
- Instream: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources.
- Nearshore: Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and
  Puget Sound Nearshore. (*full descriptions of habitats and the definition of relatively undisturbed are in WDFW report –
  see web link on previous page*).
- **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.
- **Cliffs:** Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevation.
- **Talus:** Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.

**Note:** All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

Wetland Rating System for Western WA: 2014 Update Rating Form – Effective January 1, 2015

#### **CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS**

| Wetland Type                                                                                                          | Category |
|-----------------------------------------------------------------------------------------------------------------------|----------|
| Check off any criteria that apply to the wetland. Circle the category when the appropriate criteria are met           |          |
| SC 1.0. Estuarine wetlands                                                                                            |          |
| Does the wetland meet the following criteria for Estuarine wetlands?                                                  |          |
| — The dominant water regime is tidal,                                                                                 |          |
| — Vegetated, and                                                                                                      |          |
| — With a salinity greater than 0.5 ppt Yes –Go to <b>SC 1.1</b> No= <b>Not an estuarine wetland</b>                   |          |
| SC 1.1. Is the wetland within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area       |          |
| Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC 332-30-151?            |          |
| Yes = Category I No - Go to SC 1.2                                                                                    | Cat. I   |
| SC 1.2. Is the wetland unit at least 1 ac in size and meets at least two of the following three conditions?           |          |
| — The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing, and has less         |          |
| than 10% cover of non-native plant species. (If non-native species are Spartina, see page 25)                         | Cat. I   |
| — At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-            |          |
| mowed grassland.                                                                                                      | Cat II   |
| — The wetland has at least two of the following features: tidal channels, depressions with open water, or             | Cut. II  |
| contiguous freshwater wetlands. Yes = Category I No = Category II                                                     |          |
| SC 2.0. Wetlands of High Conservation Value (WHCV)                                                                    |          |
| SC 2.1. Has the WA Department of Natural Resources updated their website to include the list of Wetlands of High      |          |
| Conservation Value? Yes – Go to SC 2.2 No – Go to SC 2.3                                                              | Cat. I   |
| SC 2.2. Is the wetland listed on the WDNR database as a Wetland of High Conservation Value?                           |          |
| Yes = Category I No = Not a WHCV                                                                                      |          |
| SC 2.3. Is the wetland in a Section/Township/Range that contains a Natural Heritage wetland?                          |          |
| http://www1.dnr.wa.gov/nhp/refdesk/datasearch/wnhpwetlands.pdf                                                        |          |
| Yes – Contact WNHP/ WDNR and go to SC 2.4 No = Not a WHCV                                                             |          |
| their website?                                                                                                        |          |
|                                                                                                                       |          |
| Does the wetland (or any part of the unit) meet both the criteria for soils and vegetation in bogs? Use the key       |          |
| below. If you answer YES you will still need to rate the wetland based on its functions.                              |          |
| SC 3.1. Does an area within the wetland unit have organic soil horizons, either peats or mucks, that compose 16 in or |          |
| more of the first 32 in of the soil profile? Yes – Go to SC 3.3 No – Go to SC 3.2                                     |          |
| SC 3.2. Does an area within the wetland unit have organic soils, either peats or mucks, that are less than 16 in deep |          |
| over bedrock, or an impermeable hardpan such as clay or volcanic ash, or that are floating on top of a lake or        |          |
| pond? Yes – Go to SC 3.3 No = Is not a bog                                                                            |          |
| SC 3.3. Does an area with peats or mucks have more than 70% cover of mosses at ground level, AND at least a 30%       |          |
| cover of plant species listed in Table 4? Yes = Is a Category I bog No – Go to SC 3.4                                 |          |
| <b>NOTE:</b> If you are uncertain about the extent of mosses in the understory, you may substitute that criterion by  |          |
| nieasuring the prior the water that seeps into a noie dug at least 16 in deep. If the prior is less than 5.0 and the  | Cat. I   |
| SC 3.4. Is an area with neats or mucks forested (> 30% cover) with Sitka shruce, subalning fir, western red cedar     |          |
| western hemlock, lodgepole pine, quaking aspen. Engelmann spruce, or western white nine. AND any of the               |          |
| species (or combination of species) listed in Table 4 provide more than 30% of the cover under the canopy?            |          |
| Yes = Is a Category I bog No = Is not a bog                                                                           |          |

| Does the wetland have at least <u>1 contiguous acre</u> of forest that meets one of these criteria for the WA<br>Department of Fish and Wildlife's forests as priority habitats? <i>If you answer YES you will still need to rate</i><br><i>the wetland based on its functions.</i><br>— Old-growth forests (west of Cascade crest): Stands of at least two tree species, forming a multi-layered |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Department of Fish and Wildlife's forests as priority habitats? <i>If you answer YES you will still need to rate</i><br><i>the wetland based on its functions.</i><br>— <b>Old-growth forests</b> (west of Cascade crest): Stands of at least two tree species, forming a multi-layered                                                                                                           |
| — Old-growth forests (west of Cascade crest): Stands of at least two tree species, forming a multi-layered                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
| canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) that are at least 200 years of                                                                                                                                                                                                                                                                                      |
| age OR have a diameter at breast height (dbh) of 32 in (81 cm) or more.                                                                                                                                                                                                                                                                                                                           |
| species that make up the canopy have an average diameter (dbh) exceeding 21 in (53 cm).                                                                                                                                                                                                                                                                                                           |
| Mature trees are present in the buffer but Ves = Category I No = Not a forested wetland for this section Cat. I                                                                                                                                                                                                                                                                                   |
| not within the wetland.                                                                                                                                                                                                                                                                                                                                                                           |
| SC 5.0. Wetlands in Coastal Lagoons                                                                                                                                                                                                                                                                                                                                                               |
| Does the wetland meet all of the following criteria of a wetland in a coastal lagoon?                                                                                                                                                                                                                                                                                                             |
| — The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or less frequently, rocks                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
| during most of the year in at least a portion of the lagoon <i>(needs to be measured near the bottom)</i>                                                                                                                                                                                                                                                                                         |
| Yes – Go to SC 5.1 No = Not a wetland in a coastal lagoon                                                                                                                                                                                                                                                                                                                                         |
| SC 5.1. Does the wetland meet all of the following three conditions?                                                                                                                                                                                                                                                                                                                              |
| — The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less                                                                                                                                                                                                                                                                                    |
| than 20% cover of aggressive, opportunistic plant species (see list of species on p. 100).                                                                                                                                                                                                                                                                                                        |
| — At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-                                                                                                                                                                                                                                                                                        |
| The wetland is larger than $\frac{1}{2}$ as (4250 ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                               |
| Yes = Category I No = Category II                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                   |
| SC 6.0. Interdunal wetlands                                                                                                                                                                                                                                                                                                                                                                       |
| you answer ves you will still need to rate the wetland based on its habitat functions.                                                                                                                                                                                                                                                                                                            |
| In practical terms that means the following geographic areas:                                                                                                                                                                                                                                                                                                                                     |
| — Long Beach Peninsula: Lands west of SR 103                                                                                                                                                                                                                                                                                                                                                      |
| — Grayland-Westport: Lands west of SR 105 Cat I                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Ocean Shores-Copalis: Lands west of SR 115 and SR 109</li> </ul>                                                                                                                                                                                                                                                                                                                         |
| Yes – Go to SC 6.1 No = not an interdunal wetland for rating                                                                                                                                                                                                                                                                                                                                      |
| SC 6.1. Is the wetland 1 ac or larger and scores an 8 or 9 for the babitat functions on the form (rates H H H or H H M Cat. II                                                                                                                                                                                                                                                                    |
| for the three aspects of function)? Yes = <b>Category I</b> No – Go to <b>SC 6.2</b>                                                                                                                                                                                                                                                                                                              |
| SC 6.2. Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger?                                                                                                                                                                                                                                                                                                   |
| Yes = Category II No – Go to SC 6.3 Cat. III                                                                                                                                                                                                                                                                                                                                                      |
| SC 6.3. Is the unit between 0.1 and 1 ac, or is it in a mosaic of wetlands that is between 0.1 and 1 ac?                                                                                                                                                                                                                                                                                          |
| Yes = Category III No = Category IV                                                                                                                                                                                                                                                                                                                                                               |
| Category of wetland based on Special Characteristics                                                                                                                                                                                                                                                                                                                                              |
| If you answered No for all types, enter "Not Applicable" on Summary Form                                                                                                                                                                                                                                                                                                                          |



#### Williams Crossing Development Wetland Delineation





### Data Sources:

Williams Crossing Development Wetland Delineation





Williams Crossing Development Wetland Delineation





Figure 4 - Contributing Basin to Wetland Units A/B and Offsite Wetland

## StreamStats Report - Williams Crossing Wetlands A/B



| Basin Characteristics |                                                                     |       |                 |
|-----------------------|---------------------------------------------------------------------|-------|-----------------|
| Parameter<br>Code     | Parameter Description                                               | Value | Unit            |
| CANOPY_PCT            | Percentage of drainage area covered by canopy as                    | 75.7  | percent         |
|                       | described in OK SIR 2009_5267                                       |       |                 |
| DRNAREA               | Area that drains to a point on a stream                             | 0.11  | square<br>miles |
| PRECIP                | Mean Annual Precipitation                                           | 50    | inches          |
| PRECPRIS10            | Basin average mean annual precipitation for 1981 to 2010 from PRISM | 47.1  | inches          |
| RELIEF                | Maximum - minimum elevation                                         | 56.3  | feet            |

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.5.3 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2



### Water Quality Atlas Map



# Rating Figure 5



### Water Quality Atlas Map



Data transparency

60%

Show 5 V entries Showing 1 to 5 of 167 entries First Previous Next Last Appendix C Photographs



Photograph 1. View looking at south end of Wetland B.



Photograph 2. View looking north at south end of Wetland B.



Photograph 3. View looking north at Wetland B.



Photograph 4. View looking at herb understory in Wetland B



Photograph 5. View looking at small pond (likely excavated historically) within Wetland B. Pond is approximately 400 square feet in size.



Photograph 6. View looking at north end of Wetland B.



Photograph 7. View looking northwest at Wetland A.



Photograph 8. View looking north at Wetland A offsite.



Photograph 9. View looking at understory in Wetland A.



Photograph 10. View looking north at location where Wetland A and Wetland B merge offsite.



Photograph 11. View looking at buffer between Wetland A and B.



Photograph 12. View looking at first occurrence of stream channel on offsite City of Lacey property.



Photograph 13. View looking across wetland on offsite City of Lacey property.



Photograph 14. View looking at buffer habitat on offsite wetland.

# Appendix D Project Site Plan

This page intentionally left blank.



Jun 10, 2021 3:40:22PM - User Chris Cramer P:\2019\19527 Williams Crossing\Drawing\Working\SPR\19527



February 13, 2024 ES-9532.01 Earth Solutions NW LLC

Geotechnical Engineering, Construction Observation/Testing and Environmental Services

Sage Homes Northwest, LLC 9505 – 19<sup>th</sup> Avenue Southeast, Suite 118 Everett, Washington 98208

Attention: Albert Torrico

Subject: Infiltration Evaluation Williams Crossing 5224, 5228, and 5216 – 15<sup>th</sup> Avenue Northeast Thurston County (Olympia), Washington

Dear Albert:

Earth Solutions NW, LLC (ESNW) has prepared this infiltration evaluation for the proposed project. ESNW performed our work in general accordance with the scope of services outlined in our proposal dated November 21, 2023, which was authorized on November 28, 2023. A summary of the subsurface exploration, laboratory analyses, and an evaluation of infiltration feasibility and related considerations are provided in this letter report.

ESNW is currently conducting a seasonal groundwater monitoring program at the subject site to supplement this letter and to further characterize on-site infiltration feasibility. The results of the seasonal groundwater monitoring program have the potential to influence the design parameters given in this letter, which should be reevaluated at the end of the monitoring period. Upon completion of the seasonal monitoring period, an additional summary letter will be provided.

#### Project & Site Description

The subject site is located on the north side of 15<sup>th</sup> Avenue Northeast at the intersection with Century Court Northeast, in the Olympia area of unincorporated Thurston County, Washington. The site consists of three adjoining tax parcels (Thurston County Parcel Nos. 11809310-600, -700, and -100) totaling about 18.7 acres of land area. The approximate site location is depicted on Plate 1 (Vicinity Map).

The property is currently developed with a single-family residence and associated improvements. The relatively large site is mostly undeveloped and vacant, vegetated with mature trees, understory growth, and a mixture of native plant species. The site is bordered to the east and west by similarly developed residential lots, to the north by undeveloped and forested land, and to the south by 15<sup>th</sup> Avenue Northeast.

Per Thurston County GIS mapping and ESNW site experience, topography is relatively level across the southern portion of the project site. North of the existing residence, surface grades descend at moderate gradients to the north for a total of about 70 feet of topographic relief within the parcel boundaries.

Formal site plans were not available for review at the time of letter preparation. However, we understand that a large-scale stormwater infiltration facility is proposed in the northwest portion of the project site as part of the overall site development plans, which was the focus of this letter.

#### Subsurface Conditions

To explore the subsurface and to characterize the on-site soil and geologic conditions as they relate to infiltration feasibility, an ESNW representative observed, logged, and sampled three borings and three test pits, all targeted at requested locations within the proposed infiltration facility footprint. The borings were completed on November 7, 2023 using a track-mounted drill rig and operators retained by ESNW. The test pits were completed on December 27, 2023 using a trackhoe and operator retained by ESNW. The borings were advanced to a maximum depth of 31.5 feet below the existing ground surface (bgs), and the test pits were advanced to a maximum depth of 18 feet bgs.

The approximate locations of the explorations are depicted on Plate 2 (Subsurface Exploration Plan). Please refer to the attached exploration logs for a more detailed description of subsurface conditions. Representative soil samples collected at the exploration locations were analyzed in general accordance with Unified Soil Classification System (USCS) and United States Department of Agriculture (USDA) methods and procedures. Representative soil samples were analyzed for stormwater treatment potential in the form of organic content (OC) and cation exchange capacity (CEC) testing.

#### Topsoil and Fill

Due to the sampling methods utilized in hollow-stem auger drilling, topsoil thicknesses were not observed at the boring locations. At the test pit locations, however, topsoil was encountered within the upper 10 to 12 inches of existing grades. Deeper or shallower pockets of topsoil may be encountered locally across the site. The topsoil was characterized by its dark brown color, the presence of fine organic material, and small root intrusions.

Fill was not observed at the November and December 2023 exploration sites.

#### Native Soil

Underlying the topsoil at the test locations, native soils were variable in composition and consistent with typical recessional outwash sand and silt deposits. Based on blow counts recorded during the drilling, the site soils are chiefly in a medium dense condition.

Soil compositions observed across numerous distinct soil strata included poorly graded sand, silty sand, sandy silt, and silt (USCS: SP, SM, and ML). Laminations and interbeds ranging in thickness from inch-scale to foot-scale were observed at variable depths at the exploration sites.

In general, at the test pit locations, silt-dominant soils were encountered immediately below the topsoil and extended to depths between six and ten and one-half feet bgs. Underlying the silts, sand-dominant soils were encountered and generally extended to depths between 15 and 17 feet bgs. Thin, inch-scale laminations were observed within the upper one to two feet of the sand-dominant soils described above. Thicker, foot-scale interbeds of silt-dominant soils were encountered beginning at 15 to 17 feet bgs. At test locations TP-2 and TP-3, relatively free-draining, sand-dominant soils were exposed again below the foot-scale silty interbeds and extended to the termination depth of the explorations. Test pit TP-1 was terminated within a section of silt-dominant soils due to maximum excavator reach.

Laboratory analyses of representative soil samples indicate that fines contents ranged between about 4 and 98 percent. The in-situ moisture content ranged from moist to wet at the time of the exploration.

#### **Geologic Setting**

The referenced geologic map indicates the site is underlain by recessional sand and minor silt deposits of Late Vashon age (Qgos).

As reported on the geologic map, the mapped recessional deposits consist of moderately wellsorted fine- to medium-grained sand with minor silt, deposited in and around the margins of glacial lakes. This geologic unit is thought to have been deposited largely during deglaciation when there was stagnant ice occupying much of the southern Puget Lowland.

The referenced WSS resource indicates the site is mantled by the following USDA soil units: Giles silt loam on slopes from 0 to 15 percent, Hoogdal silt loam on slopes from 15 to 30 percent, Indianola loamy sand on slopes from 15 to 30 percent, and Skipopa silt loam on slopes from 3 to 15 percent. Skipopa and Giles series soils surface about 80 percent of the project site.

Per the referenced USDA soil survey report, surface water runoff, erosivity, parent material, and geomorphic position for the identified soil types are as follows:

- Giles series soils maintain slow runoff and slight erosion hazard, formed in volcanic ash and glacial outwash on terraces.
- Hoogdal series soils maintain medium runoff and moderate erosion hazard, formed in loess and glaciolacustrine sediments on terrace escarpments.
- Indianola series soils maintain medium runoff and moderate erosion hazard, formed in sandy glacial drift on terrace escarpments.
- Skipopa series soils maintain slow runoff and slight erosion hazard, formed in volcanic ash and loess over glaciolacustrine sediments on terraces.

Based on conditions observed during the fieldwork, in our opinion, the native soils are representative of stratified recessional outwash deposits and are consistent with the geologic and soil mapping resources reviewed in this section.

#### Groundwater

Groundwater was observed at two exploration sites completed during the November and December 2023 fieldwork: at boring B-2, heavy groundwater seepage was delineated at approximately 30 feet bgs. At test pit TP-1, light groundwater seepage was observed at about 6 feet bgs, and, after completion of a small-scale Pilot Infiltration Test (which added roughly 2,500 gallons of water to the test hole earlier in the day), heavy seepage was observed perched at about 17 feet bgs.

Groundwater monitoring wells were installed at boring locations B-1, B-2, and B-3. All three wells were installed to their respective bottom of boring depths (31.5 feet bgs at all locations), and the bottom 20 feet of the wells were screened. Seasonal groundwater monitoring services provided by ESNW were ongoing at the time this letter was prepared.

Zones of perched groundwater seepage are common within glacial deposits and should be expected within site excavations at depth, particularly during the wet season. Groundwater seepage rates and elevations may fluctuate depending on many factors, including precipitation duration and intensity, the time of year, and soil conditions. In general, groundwater flow rates are higher during the winter, spring, and early summer months.

#### Infiltration Evaluation

Based on the results of our investigation, the proposed infiltration facility is underlain by a thick sequence of stratified recessional sand and silt deposits. Large volumes of relatively freedraining sand-dominant soils were observed, and provided adequate separation from the seasonal water table and/or low permeability soil layers is maintained, it is our opinion that full infiltration is considered feasible from for this project from a geotechnical standpoint.

#### **Design Infiltration Rates**

To provide design infiltration rates for the proposed infiltration facility, ESNW completed two small-scale Pilot Infiltration Tests (PITs) in general accordance with the requirements of the City of Lacey 2022 Stormwater Design Manual (2022 COLSDM) for which the project is vested. Small-scale PITs were utilized instead of large-scale PITs in this case due to the high infiltration rate of the native soils and limited access to a water source.

The PITs were completed at test locations TP-1 and TP-2 at depths of approximately 9 and 10 feet bgs, respectively, as requested by the project civil engineer and within representative sections of the native recessional sand deposits. Both PITs were completed within the previously described sand-dominant soil strata (USCS: SP) of the identified recessional deposits, which were classified in the lab as USDA soil type: *slightly gravelly sand* at the testing depths within both PIT locations.

The following table presents the measured ( $K_{sat}$  initial) and design ( $K_{sat}$  design) infiltration rates, as well as the required correction factors for site variability and number of locations tested ( $CF_v$ ), test method ( $CF_t$ ), and the degree of influent control to prevent siltation and bio-buildup ( $CF_m$ ).

| Test Pit ID | Test Depth | K <sub>sat</sub> initial | CFv  | CFt | CFm | K <sub>sat</sub> design |
|-------------|------------|--------------------------|------|-----|-----|-------------------------|
| TP-1        | 9 ft       | 82 in/hr                 | 0.33 | 0.5 | 0.9 | 12 in/hr                |
| TP-2        | 10 ft      | 21 in/hr                 |      |     |     | 3 in/hr                 |

In consideration of the variability between measured rates, design rates, and the soil types outlined in the table above, we recommend a conservative, **facility-wide design infiltration rate of 3 in/hr** be utilized for this project. ESNW must be provided with the opportunity to observe soil conditions at the facility subgrade as they are exposed during construction to confirm suitable soils are exposed across the facility footprint.

Based on the results of our in-situ infiltration testing, the identified sand-dominant recessional outwash deposits present an excellent opportunity for full on-site stormwater infiltration, and the proposed facility should be designed to interface with these soils beginning at depths between about 7.5 and 10.5 feet bgs.

#### Depth to Bedrock, Water Table, or Impermeable Layer

Per the 2022 COLSDM (Chapter 7 – Section 7.2.2 – Step 2), the base of all infiltration basins, trenches, or galleries shall be a <u>minimum of five feet</u> above the seasonal high groundwater levels, bedrock, dense glacial till ("hardpan"), or other low permeability layer. Reduced vertical separation down to three feet may be considered pending further analyses of groundwater mounding potential, facility geometry, volumetric capacity, and overflow/bypass design. Groundwater mounding analyses may be necessary and should consider the results of the seasonal groundwater monitoring program, which was ongoing at the time of letter preparation.

Subsurface conditions observed during the fieldwork indicate the native soils are stratified with alternating layers of silt- and sand-dominant soils that are variable in thickness and depth. As noted in the *Native Soil* section of this letter, laboratory analyses of representative soil samples indicate that fines contents ranged between about 4 and 98 percent. Silt-dominant soil layers with high fines content are considered "low permeability layers," and should be considered in the infiltration BMP design.

In our opinion, due to the sampling methods employed in hollow-stem auger drilling (under typical conditions, 18 inches of sample recovered for every 5 feet of drilling), there is a distinct possibility that the thicker (i.e. one- to two-foot thick), silt-dominant interbeds observed at the test pit locations were completely bypassed by the exploratory drilling and sampling. Test pit excavations provide an opportunity for "continuous" observation of the soil profile, and therefore provide higher resolution data for use in geotechnical design. In our opinion, the general lack of similar, one- to two-foot thick silty interbeds on the boring logs may not be representative of actual conditions regarding the presence of low permeability layering. In this case, it is pertinent to rely on the test pit observations in the evaluation of vertical separation from hydraulically restrictive soil layers.

Based on the test pit observations, <u>sections of favorable sand for which the design infiltration</u> rates were provided above were observed as follows:

- Test Pit TP-1 between 7.5 and 17 feet bgs (9.5 feet of exposure)
- Test Pit TP-2 between 9 and 15.5 feet bgs (6.5 feet of exposure)
- Test Pit TP-3 between 10.5 and 15 feet bgs (4.5 feet of exposure)

It is important to note that the subsurface exploration activities expose a small fraction of surface area within the proposed facility footprint, and that the native soils – while relatively consistent in geological terms (recessional outwash soil deposits encountered throughout subsurface explorations across the site) – are subject to wide variations in fines content over short lateral and vertical distances, as evidenced by the test pit observations and supporting sieve analyses.

As such, it is our opinion that a contingency should be provided in the budget to account for potential overexcavations necessary to expose favorable soils in areas of the infiltration facility footprint. Where silt-dominant soils may be exposed at infiltration BMP facility subgrades, the excavation would likely need to be further advanced to expose free-draining, granular soils (similar to those tested in this evaluation).

#### Soil Suitability for Infiltration Treatment

In accordance with the requirements of the 2022 COLSDM (Chapter 8 – Section 8.6.3), we evaluated the native soil for runoff treatment feasibility based on the required soil suitability criteria. In our evaluation, the native soils do not meet the requirements for use as a treatment BMP, and a separate treatment BMP upstream of the infiltration BMP will likely be necessary.

#### Soil Suitability Criteria #1

Soil suitability criteria #1 states that the measured ( $K_{sat}$  initial) soil infiltration rate must be 9 inches per hour or less to be utilized for infiltration treatment. Based on the in-situ infiltration testing (and the measured and design rates provided in the table above), measured soil infiltration rates exceed the maximum allowable threshold of 9 in/hr as required by the 2022 COLSDM.

#### Soil Suitability Criteria #2

Soil suitability criteria #2 includes requirements for cation exchange capacity (CEC), organic content (OC), depth of soil used for treatment, and the use of waste fill materials.

Representative soil samples collected at the test locations were analyzed for their CEC and OC, the results of which are outlined in the table below.

| Test Pit ID | Sample Depth | OC (%) | CEC (meq/100 g) |
|-------------|--------------|--------|-----------------|
| TP-1        | 11.0 ft      | 0.5    | 5.0             |
| TP-2        | 12.0 ft      | 0.8    | 4.2             |

Per the 2022 COLSDM, CEC of the treatment soil must be at least 5 milliequivalents per 100 grams of dry soil, and OC of the treatment soil must be at least 1.0 percent. Based on the laboratory analyses and the thresholds outlined above, the tested soils do not meet the CEC and OC requirements for infiltration treatment.

Because the CEC and OC requirements are not met, further evaluation of the depth of soil used for treatment will have to be considered in design of the facility.

Based on our review of Thurston County online GIS mapping, the entire site is located within a Category II ("high aquifer sensitivity") Critical Aquifer Recharge Area (CARA), and a Category I ("extreme aquifer sensitivity") CARA is identified along the northern site boundary. As such, and because the soil does not meet the design requirements for infiltration treatment, a separate treatment BMP upstream of the infiltration BMP will likely be necessary to meet the 2022 COLSDM and Thurston County design standards.

#### Limitations & Additional Services

This letter report has been prepared for the exclusive use of Sage Homes Northwest, LLC, and its representatives. The recommendations and conclusions provided in this letter report are professional opinions consistent with the level of care and skill that is typical of other members in the profession currently practicing under similar conditions in this area. A warranty is neither expressed nor implied. If the design assumptions outlined herein either change or are incorrect, ESNW should be contacted to review the recommendations provided in this letter report. ESNW should be contacted to review the final design to confirm that our geotechnical recommendations have been incorporated into the plans.

ESNW should be retained to provide additional consultation services as needed during future design phases of the project. ESNW can also provide earthwork observations and testing services during the construction phase of this project. Variations in the soil and groundwater conditions observed at the exploration locations may exist and may not become evident until construction. ESNW should reevaluate the conclusions provided in this letter report if variations are encountered.

Sage Homes Northwest, LLC February 13, 2024

ES-9532.01 Page 9

We appreciate the opportunity to be of service to you and trust this letter meets your current needs. Should you have any questions, or require additional information, please call.

Sincerely,

#### EARTH SOLUTIONS NW, LLC

Brian C. Snow, L.G. Project Geologist



Stephen H. Avril Project Manager

Kyle R. Campbell, P.E. Senior Principal Engineer

Attachments: Plate 1 – Vicinity Map Plate 2 – Subsurface Exploration Plan Subsurface Exploration Logs Grain Size Distribution Report Organic Content Report AmTest Analysis Report

cc: Sage Homes Northwest, LLC Attention: Larry Calvin
#### References:

- Geotechnical Engineering Report, prepared by GeoResources, LLC, Project No. 11809310-600,-700, & -100 ThreesCompanyLLC.15thAveNE.RG, dated March 26, 2020
- Geologic Map of the Lacey 7.5-minute Quadrangle, Thurston County, Washington, by Logan, R.L., Walsh, T.J., Schasse, H.W., and Polenz, M., dated 2003
- NRCS Web Soil Survey
- Soil Survey of Thurston County, Washington, prepared by the United States Department of Agriculture, issued June 1990
- City of Lacey Stormwater Design Manual, June 2022 Edition





|                 |                                    |                                                                                             | _                                            |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                                                                                             |  |  |  |
|-----------------|------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
|                 | se le                              |                                                                                             |                                              | Well-graded gravel with                                             | Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Content                    | Symbols                                                                                                     |  |  |  |
|                 | Coal<br>Siev                       | Fines                                                                                       | GW                                           | or without sand, little to<br>no fines                              | Dry - Absence of m<br>the touch                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oisture, dusty, dry to     | $\nabla$ ATD = At time Surface seal                                                                         |  |  |  |
|                 | n 50% of<br>on No. 4               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | GP                                           | Poorly graded gravel with<br>or without sand, little to<br>no fines | Damp - Perceptible<br>optimum MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e moisture, likely below   | ✓     of drilling     G     Bentonite       Static water     ✓     Grout       ✓     level (date)     Grout |  |  |  |
| 0 Sieve         | ore Tha<br>etained                 |                                                                                             | GM                                           | Silty gravel with or without                                        | Wolst - Damp but n<br>at/near optimum M<br>Wet - Water visible                                                                                                                                                                                                                                                                                                                                                                                                                                             | but not free draining,     | ▼       Filter pack with         ∵       ∵         ∵       blank casing         ∵       section             |  |  |  |
| s -<br>0. 20    | s - Mo<br>on Re                    |                                                                                             |                                              | sand                                                                | likely above optimu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | Screened casing                                                                                             |  |  |  |
| l Soils<br>on N | I Soils<br>on N<br>avels<br>ractic |                                                                                             | GC                                           | Clayey gravel with or                                               | water, typically belo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ow groundwater table       |                                                                                                             |  |  |  |
| ained           | 0 <u> </u>                         |                                                                                             | ğ                                            |                                                                     | Terms D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Describing Relative        | e Density and Consistency                                                                                   |  |  |  |
| -Gra            |                                    |                                                                                             | <b>,</b>                                     | Well-graded sand with                                               | Coarse-Graine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d Soils:                   | Test Symbols & Units                                                                                        |  |  |  |
| Irse<br>% R     | arse<br>ve                         | ues                                                                                         | SW                                           | or without gravel, little to                                        | Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SPT blows/foot             | Fines = Fines Content (%)                                                                                   |  |  |  |
| Coa<br>50       | Co8<br>Sie                         |                                                                                             |                                              |                                                                     | Loose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 4<br>4 to 9              | MC = Moisture Content (%)                                                                                   |  |  |  |
| har             | e of .                             | 20                                                                                          | SD                                           | Poorly graded sand with                                             | Medium Dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 to 29                   | DD = Dry Density (pcf)                                                                                      |  |  |  |
| re T            | Aore<br>Nore                       | <b>`</b>                                                                                    | J                                            | no fines                                                            | Dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30 to 49                   | Str = Shear Strength (tsf)                                                                                  |  |  |  |
| Mo              | 6 or N<br>asse:                    |                                                                                             |                                              | Silty sand with or without                                          | Very Dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ≥ 50                       | PID = Photoionization Detector (ppm)                                                                        |  |  |  |
|                 | 50%<br>P P                         | ines                                                                                        | SM                                           | gravel                                                              | Fine-Grained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Soils:                     | OC = Organic Content (%)                                                                                    |  |  |  |
|                 | ds -<br>actio                      | 正 ] ];<br>%7 <i>7777</i>                                                                    |                                              |                                                                     | Consistency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPT blows/foot             | CEC = Cation Exchange Capacity (meq/100 g)                                                                  |  |  |  |
|                 | Sano<br>Fra                        | ~///                                                                                        | sr                                           | Clayey sand with or                                                 | Very Soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 2<br>2 to 3              | LL = Liquid Limit (%)                                                                                       |  |  |  |
|                 | 0,                                 | ^\///                                                                                       |                                              | without gravel                                                      | Medium Stiff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 to 3<br>4 to 7           | PL = Plastic Limit (%)                                                                                      |  |  |  |
|                 |                                    |                                                                                             | :/                                           | Silt with or without cond                                           | Stiff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 to 14                    | PI = Plasticity Index (%)                                                                                   |  |  |  |
|                 | 150                                |                                                                                             | ML                                           | or gravel; sandy or                                                 | Very Stiff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15 to 29                   |                                                                                                             |  |  |  |
|                 | ys<br>Thai                         |                                                                                             |                                              | gravelly silt                                                       | Hard ≥ 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                                                                                             |  |  |  |
| eve             | d Cla<br>ess                       |                                                                                             |                                              | Clay of low to medium<br>plasticity; lean clay with                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Componen                   | t Definitions                                                                                               |  |  |  |
| Sie             | s an<br>nit L                      |                                                                                             |                                              | or without sand or gravel;                                          | Descriptive Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Size Range                 | e and Sieve Number                                                                                          |  |  |  |
| s -<br>200      | Silts                              |                                                                                             | 4                                            | Sandy of gravely learn day                                          | Boulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Larger than                | ו 12"                                                                                                       |  |  |  |
| Soil<br>No.     | auic                               | . ===                                                                                       | OL                                           | Organic clay or silt of<br>low plasticity                           | Gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3" to 12"<br>3" to No. 4   | (4.75 mm)                                                                                                   |  |  |  |
| ined<br>sses    |                                    |                                                                                             | -                                            |                                                                     | Coarse Gravel<br>Fine Gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3" to 3/4"<br>3/4" to No.  | 4 (4.75 mm)                                                                                                 |  |  |  |
| e Pa            | l ar                               |                                                                                             | мн                                           | Elastic silt with or without sand or gravel; sandy or               | Sand<br>Coarse Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No. 4 (4.75<br>No. 4 (4.75 | 5 mm) to No. 200 (0.075 mm)<br>5 mm) to No. 10 (2.00 mm)                                                    |  |  |  |
| Fine<br>Mor     | ays<br>r Mc                        |                                                                                             |                                              | gravelly elastic silt                                               | Medium Sand<br>Fine Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No. 10 (2.0<br>No. 40 (0.4 | 0 mm) to No. 40 (0.425 mm)<br>125 mm) to No. 200 (0.075 mm)                                                 |  |  |  |
| 6 OF            | 1 Clé<br>50 o                      |                                                                                             | ~                                            | Clay of high plasticity;<br>fat clay with or without                | Silt and Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Smaller that               | an No. 200 (0.075 mm)                                                                                       |  |  |  |
| 50%             | s anc                              |                                                                                             | СН                                           | sand or gravel; sandy or                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Modifier I                 | Definitions                                                                                                 |  |  |  |
|                 | Silts<br>uid L                     |                                                                                             |                                              | Organic clay or silt of                                             | Percentage by Weight (Approx.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Modifier                   |                                                                                                             |  |  |  |
|                 | Lio                                |                                                                                             | <b>OH</b>                                    | medium to high plasticity                                           | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trace (san                 | d, silt, clay, gravel)                                                                                      |  |  |  |
| <u> </u>        | ပ<br>ပ                             |                                                                                             | â                                            |                                                                     | 5 to 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Slightly (sa               | ndy, silty, clayey, gravelly)                                                                               |  |  |  |
| ghly            | gani<br>oils                       | <u> </u>                                                                                    | PT                                           | Peat, muck, and other                                               | 15 to 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sandy, silty               | <i>ı</i> , clayey, gravelly                                                                                 |  |  |  |
| Ē               | Σ<br>O                             | <u></u>                                                                                     | <u>,                                    </u> |                                                                     | > 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Very (sand                 | y, silty, clayey, gravelly)                                                                                 |  |  |  |
|                 | FILL Made Ground                   |                                                                                             |                                              | Made Ground                                                         | Classifications of soils in this geotechnical report and as shown on the exploration logs are based on visual field and/or laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates, and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual and/or laboratory classification methods of ASTM D2487 and D2488 were used as an identification quide for the Unified Soil Classification System. |                            |                                                                                                             |  |  |  |
|                 | -                                  | Ear                                                                                         | th                                           | Earth Solution                                                      | IS NWLLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                                                                                             |  |  |  |

# Solutions

Geotechnical Engineering, Construction Observation/Testing and Environmental Services

# **EXPLORATION LOG KEY**



|                   | Soluti<br>NW1         | th<br>ions<br>Lc 15365 NE<br>Redmond,<br>Office (425<br>Branch Off | 90th S<br>WA 98<br>5) 449-<br>ïce: Pa | Street,<br>8052<br>4704<br>asco, V | Suite 100<br>  esnw.cor<br><i>VA</i> | n                                                                                 |                                                                                                                              | TEST PIT NUMBER TP-2<br>PAGE 1 OF 1                                                                                                      |
|-------------------|-----------------------|--------------------------------------------------------------------|---------------------------------------|------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| PRO.              | IFCT NUM              | IBER ES-9532.01                                                    | 1                                     |                                    |                                      |                                                                                   | PROJECT NAME Williams Cros                                                                                                   | ssing                                                                                                                                    |
| DATE              | STARTE                | <b>D</b> 12/27/23                                                  | ·(                                    | COMP                               | LETED 1                              | 12/27/23                                                                          | GROUND ELEVATION                                                                                                             |                                                                                                                                          |
| EXCA              | VATION                | CONTRACTOR N                                                       | W Exc                                 | avatir                             | ng                                   |                                                                                   | LATITUDE 47.06038                                                                                                            | LONGITUDE -122.81401                                                                                                                     |
| LOGO              | GED BY                | BCS                                                                | (                                     | CHEC                               | KED BY                               | SHA                                                                               | GROUND WATER LEVEL:                                                                                                          |                                                                                                                                          |
| NOTE              | S                     |                                                                    |                                       |                                    |                                      |                                                                                   | ${ar ar ar ar ar ar ar ar ar ar $                                                                                            | ATION                                                                                                                                    |
| SURF              |                       | IDITIONS Ferns/f                                                   | orest                                 |                                    |                                      |                                                                                   | AFTER EXCAVATIO                                                                                                              | N                                                                                                                                        |
| O DEPTH<br>(ft)   | SAMPLE TYPE<br>NUMBER | TESTS                                                              | U.S.C.S.                              | GRAPHIC<br>LOG                     |                                      |                                                                                   | MATERIAL DESC                                                                                                                | RIPTION                                                                                                                                  |
|                   |                       |                                                                    | TPSL                                  | <u>1, 1, 1, 1</u>                  | -) [<br>  1 0 -                      | Dark brown TOPS<br>minor to moderate                                              | OIL<br>e root intrusions                                                                                                     |                                                                                                                                          |
|                   | -                     |                                                                    | SM                                    |                                    | 3.0                                  | Brown silty SAND,                                                                 | medium dense, moist to wet                                                                                                   |                                                                                                                                          |
| <br><u>5</u>      | © (GB)                | MC = 37.4                                                          | - ML                                  |                                    | -1<br>-1<br>-1<br>-1                 | Bray SILI, dense,<br>trace iron oxide st<br>mm-scale laminat<br>blocky cuttings   | wet<br>aining<br>ions                                                                                                        |                                                                                                                                          |
|                   | ₿<br>GB               | MC = 16.8                                                          | SM                                    |                                    | 9.0                                  | Gray silty SAND, c<br>inch-scale interbe                                          | lense, moist<br>dding to 9'                                                                                                  |                                                                                                                                          |
|                   | © (GB)                | MC = 10.2<br>Fines = 4.7                                           | SP                                    |                                    | -i<br>[l                             | Gray poorly graded<br>infiltration test<br>USDA Classificati<br>moderate caving 1 | d SAND, dense, moist<br>on: slightly gravelly SAND]<br>irom 10' - 15'                                                        |                                                                                                                                          |
|                   | <sup>®</sup> (GB      | MC = 23.8<br>CEC=4.2                                               | -                                     |                                    | -i                                   | increasing moistu                                                                 | re                                                                                                                           |                                                                                                                                          |
| <br><br><u>15</u> | © GB                  | meq/100g<br>OC=0.8<br>MC = 10.2<br>Fines = 16.1                    | SM                                    |                                    | [1<br>15.5                           | Gray silty SAND, c<br>USDA Classificati                                           | lense, moist<br>on: loamy SAND]                                                                                              |                                                                                                                                          |
|                   | <sup>®</sup> GB       | MC = 33.2<br>Fines = 69.9                                          |                                       |                                    | -I<br>17.0                           | Gray sandy SILT, o<br>moderate iron oxio<br>USDA Classificati                     | dense, wet<br>de staining<br>on: LOAM]                                                                                       |                                                                                                                                          |
|                   |                       |                                                                    | SP                                    |                                    |                                      | Gray poorly graded                                                                | d SAND, dense, damp                                                                                                          |                                                                                                                                          |
|                   | GB ,                  | MC = 4.9                                                           |                                       |                                    | <u>18.0</u><br>T<br>e                | est pit terminated                                                                | l at 18.0 feet below existing grade<br>g excavation. Caving observed fro                                                     | due to max reach. No groundwater                                                                                                         |
|                   |                       |                                                                    |                                       |                                    | L<br>C<br>s<br>o                     | IMITATIONS: Gro<br>Coordinates are ap<br>tandalone docum<br>f subsurface cond     | pund elevation (if listed) is approxim<br>proximate and based on the WGS<br>ent. Refer to the text of the geoter<br>ditions. | mate; the test location was not surveyed.<br>584 datum. Do not rely on this test log as a<br>chnical report for a complete understanding |
|                   |                       |                                                                    |                                       |                                    |                                      |                                                                                   |                                                                                                                              |                                                                                                                                          |





GENERAL BH / TP / WELL - 9532.GPJ - GINT US.GDT - 2/13/24

(Continued Next Page)

|                    | <b>Earth</b><br>Solutions<br>NWLLC<br>POLIECT NUMBER ES-9532 |                    |                             |          |                | , Suite 100<br> <br>  esnw.com<br><i>WA</i>                                                                                                                     |                                                                                                                                                                                                                             | BORING NUMBER B-1<br>PAGE 2 OF 2                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|--------------------|--------------------------------------------------------------|--------------------|-----------------------------|----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| PROJ               | PROJECT NUMBER _ES-9532                                      |                    |                             |          |                |                                                                                                                                                                 | PROJECT NAME Williams Cro                                                                                                                                                                                                   | ossing                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| DATE               | STARTE                                                       | <b>D</b> <u>11</u> | 17/23                       |          | COM            | PLETED <u>11/7/23</u>                                                                                                                                           | GROUND ELEVATION                                                                                                                                                                                                            |                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| DRILL              |                                                              |                    |                             |          |                |                                                                                                                                                                 | LATITUDE _ 47.06083                                                                                                                                                                                                         | LONGITUDE122.81427                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| LOGO               | BED BY                                                       | BCS                |                             |          | CHE            | CKED BY <u>Sha</u>                                                                                                                                              |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| NOTE               |                                                              |                    |                             | .+       |                |                                                                                                                                                                 |                                                                                                                                                                                                                             | ING                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| SURF               | SURFACE CONDITIONS Forest                                    |                    |                             |          |                |                                                                                                                                                                 |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 5 DEPTH<br>57 (ft) | SAMPLE TYPE<br>NUMBER                                        | RECOVERY %         | BLOW<br>COUNTS<br>(N VALUE) | U.S.C.S. | GRAPHIC<br>LOG |                                                                                                                                                                 | MATERIAL DESC                                                                                                                                                                                                               | RIPTION                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|                    | ss                                                           | 89                 | 5-7-5<br>(12)               |          |                | Gray silty fine SAND                                                                                                                                            | Gray silty fine SAND, medium dense, moist                                                                                                                                                                                   |                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| <br><br>           |                                                              |                    |                             | SM       |                | 30.0                                                                                                                                                            |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|                    | ss 🛛                                                         |                    | 6-7-7<br>(14)               | SP       |                | Gray poorly graded                                                                                                                                              | SAND, medium dense, damp to r                                                                                                                                                                                               | noist                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|                    |                                                              |                    |                             |          |                | Boring terminated at<br>2" PVC standpipe in<br>backfilled with silica<br>LIMITATIONS: Grou<br>Coordinates are app<br>standalone documer<br>subsurface conditior | 31.5 feet below existing grade. I<br>stalled to bottom of boring. Lowe<br>sand and bentonite chips.<br>Ind elevation (if listed) is approxin<br>roximate and based on the WGS<br>nt. Refer to the text of the geotec<br>is. | No groundwater encountered during drilling.<br>In 20.0 feet slotted. Well ID: BPG883. Boring<br>nate; the test location was not surveyed.<br>84 datum. Do not rely on this test log as a<br>hnical report for a complete understanding of |  |  |  |  |  |  |  |



| <b>Earth</b><br><b>Solutions</b><br><b>NWLC</b><br><b>15365</b> NE 90th Street, Suit<br>Redmond, WA 98052<br>Office (425) 449-4704   esr<br><i>Branch Office: Pasco, WA</i> |                                                                                                      |            |                             | E 90th<br>1, WA<br>25) 44<br><i>ffice: I</i> | Streel<br>98052<br>9-4704<br>Pasco, | :, Suite 100<br>↓   esnw.com<br>WA                                                                                                              |                                                                                                                                                                      | BORING NUMBER B-2<br>PAGE 2 OF 2                                                                                                           |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------|-----------------------------|----------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| PROJE                                                                                                                                                                       | PROJECT NUMBER <u>ES-9532</u> DATE STARTED <u>11/7/23</u> COMPLET DRILLING CONTRACTOR Boretec1, Inc. |            |                             |                                              | COM                                 | PLETED <u>11/7/23</u>                                                                                                                           | PROJECT NAME <u>Williams Cr</u> GROUND ELEVATION                                                                                                                     |                                                                                                                                            |  |  |  |  |  |  |
| LOGGED BY <u>BCS</u> CHECKED                                                                                                                                                |                                                                                                      |            |                             |                                              | CHE                                 | CKED BY <u>Sha</u>                                                                                                                              | GROUND WATER LEVEL:                                                                                                                                                  | LONGITUDE122.81404                                                                                                                         |  |  |  |  |  |  |
| HLdBD 25                                                                                                                                                                    | SAMPLE TYPE<br>NUMBER                                                                                | RECOVERY % | BLOW<br>COUNTS<br>(N VALUE) | U.S.C.S.                                     | GRAPHIC<br>LOG                      |                                                                                                                                                 | MATERIAL DESCRIPTION<br>Gray poorly graded SAND, medium dense, damp to moist <i>(continued)</i><br>-minor variations in sand grain size between fine and medium sand |                                                                                                                                            |  |  |  |  |  |  |
|                                                                                                                                                                             | SS                                                                                                   | 100        | 6-7-9<br>(16)               | SP                                           |                                     | Gray poorly graded<br>-minor variations in :                                                                                                    |                                                                                                                                                                      |                                                                                                                                            |  |  |  |  |  |  |
|                                                                                                                                                                             | ss                                                                                                   |            | 3-3-4<br>(7)                | ML                                           |                                     | Tan SILT with sand,<br>-heavy perched grou.<br>31.5 -trace iron oxide sta<br>Boring terminated a<br>feet during drilling.<br>ID: BPG884. Boring | loose, wet<br>undwater seepage<br>ining<br>t 31.5 feet below existing grade.<br>2" PVC standpipe installed to bot<br>u backfilled with silica sand and b             | Groundwater seepage encountered at 30.0<br>tom of boring. Lower 20.0 feet slotted. Well<br>entonite chips.                                 |  |  |  |  |  |  |
|                                                                                                                                                                             |                                                                                                      |            |                             |                                              |                                     | LIMITATIONS: Grou<br>Coordinates are app<br>standalone docume<br>subsurface condition                                                           | und elevation (if listed) is approxim<br>proximate and based on the WGS<br>nt. Refer to the text of the geotec<br>ns.                                                | nate; the test location was not surveyed.<br>84 datum. Do not rely on this test log as a<br>chnical report for a complete understanding of |  |  |  |  |  |  |







15365 NE 90th Street, Suite 100 Redmond, WA 98052 Office (425) 449-4704 | esnw.com *Branch Office: Pasco, WA* 

# **GRAIN SIZE DISTRIBUTION**





15365 NE 90th Street, Suite 100 Redmond, WA 98052 Office (425) 449-4704 | esnw.com *Branch Office: Pasco, WA* 

# **GRAIN SIZE DISTRIBUTION**





15365 NE 90th Street, Suite 100 Redmond, WA 98052 Office (425) 449-4704 | esnw.com *Branch Office: Pasco, WA* 

# SUMMARY OF LABORATORY RESULTS

PAGE 1 OF 1

| PROJECT NUMBER _E  | S-9532.01          | PROJECT NAME Williams Crossing |                      |                    |                        |  |  |  |  |
|--------------------|--------------------|--------------------------------|----------------------|--------------------|------------------------|--|--|--|--|
| Borehole,<br>Depth | Sample<br>Location | Date Test<br>Completed         | Water Content<br>(%) | Ash Content<br>(%) | Organic Content<br>(%) |  |  |  |  |
| TP-01, 11.0'       |                    | 1/14/24                        | 13.9                 | 99.5               | 0.5                    |  |  |  |  |
| TP-02, 12.0'       |                    | 1/14/24                        | 23.8                 | 99.2               | 0.8                    |  |  |  |  |



Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664

Professional Analytical Services

Jan 24 2024 EARTH SOLUTIONS NW 15365 NORTHEAST 90TH STREET SUITE 100 REDMOND, WA 98052 Attention: BRIAN SNOW

Dear BRIAN SNOW:

Enclosed please find the analytical data for your WILLIAMS CROSSING project.

The following is a cross correlation of client and laboratory identifications for your convenience.

| CLIENT ID    | MATRIX | AMTEST ID  | TEST |
|--------------|--------|------------|------|
| TP-1 @ 11 FT | Soil   | 24-A000681 | CONV |
| TP-2 @ 12 FT | Soil   | 24-A000682 | CONV |

Your samples were received on Thursday, January 11, 2024. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

aron Aaron Young

Vice President

Project #: ES-9532.01

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics NUT=Nutrients **DEM=Demand** 

**MIN=Minerals** 

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com



Professional Analytical Services

#### **ANALYSIS REPORT**

EARTH SOLUTIONS NW 15365 NORTHEAST 90TH STREET REDMOND, WA 98052 Attention: BRIAN SNOW Project Name: WILLIAMS CROSSING Project #: ES-9532.01 All results reported on an as received basis. Date Received: 01/11/24 Date Reported: 1/24/24

| AMTEST Identification Number | 24-A000681   |
|------------------------------|--------------|
| Client Identification        | TP-1 @ 11 FT |
| Sampling Date                | 12/27/23     |

#### Conventionals

| PARAMETER                | RESULT | UNITS    | Q | D.L. | METHOD      | ANALYST | DATE     |
|--------------------------|--------|----------|---|------|-------------|---------|----------|
| Cation Exchange Capacity | 5.0    | meq/100g |   | 0.5  | SW-846 9081 | CM      | 01/23/24 |

| AMTEST Identification Number | 24-A000682   |
|------------------------------|--------------|
| Client Identification        | TP-2 @ 12 FT |
| Sampling Date                | 12/27/23     |

#### Conventionals

| PARAMETER                | RESULT | UNITS    | Q | D.L. | METHOD      | ANALYST | DATE     |  |  |  |  |  |
|--------------------------|--------|----------|---|------|-------------|---------|----------|--|--|--|--|--|
| Cation Exchange Capacity | 4.2    | meq/100g |   | 0.5  | SW-846 9081 | СМ      | 01/23/24 |  |  |  |  |  |

non W Aaron Young Vice President

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com



QC Summary for sample numbers: 24-A000681 to 24-A000682

### DUPLICATES

| SAMPLE #                     | ANALYTE                  | UNITS    | SAMPLE VAL | JE DUP VALUE   | RPD      |  |  |  |  |  |  |  |
|------------------------------|--------------------------|----------|------------|----------------|----------|--|--|--|--|--|--|--|
| 24-A000520                   | Cation Exchange Capacity | meq/100g | 7.1        | 6.1            | 15.      |  |  |  |  |  |  |  |
|                              |                          |          |            |                |          |  |  |  |  |  |  |  |
| STANDARD REFERENCE MATERIALS |                          |          |            |                |          |  |  |  |  |  |  |  |
| ANALYTE                      |                          | UNITS    | TRUE VALUE | MEASURED VALUE | RECOVERY |  |  |  |  |  |  |  |
| Cation Exchai                | nge Capacity             | meq/100g | 2.0        | 2.0            | 100. %   |  |  |  |  |  |  |  |
| Cation Exchai                | nge Capacity             | meq/100g | 2.0        | 1.9            | 95.0 %   |  |  |  |  |  |  |  |
|                              |                          |          |            |                |          |  |  |  |  |  |  |  |
| DLAINNS                      |                          | 1        |            |                |          |  |  |  |  |  |  |  |
| ANALYTE                      |                          | UNITS    | RESULT     |                |          |  |  |  |  |  |  |  |
| Cation Exchai                | nge Capacity             | meq/100g | < 0.5      |                |          |  |  |  |  |  |  |  |
| Cation Exchai                | nge Capacity             | meq/100g | < 0.5      |                |          |  |  |  |  |  |  |  |



. . . .

AmTest Chain of Custody Record 13600 NE 126<sup>th</sup> PL, Suite C, Kirkland, WA 98034 Ph (425) 885-1664 Fx (425) 820-0245 www.amtestlab.com

|                                                                                                              | w.amtes                      | mtestlab.com     |          |                          |                       |                     | Chain of Custody No |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5000          |     |     |             |         |
|--------------------------------------------------------------------------------------------------------------|------------------------------|------------------|----------|--------------------------|-----------------------|---------------------|---------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|-----|-------------|---------|
| Client Name & Address:<br>Earth Solutions NW, LLC<br>15365 Northeast 90th Street<br>Redmond, Washington 9805 | , Suite 1<br>2               | 00               |          | Invoid<br>Atten<br>Iaura | ce To<br>tion:<br>a@e | :<br>Ms. I<br>snw.d | _aura<br>com        | Aby   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5             |     |     |             |         |
| Contact Person: Brian Snow                                                                                   |                              |                  |          | Invoice Contact:         |                       |                     |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |     |             |         |
| Phone No: 425-449-4704                                                                                       |                              |                  | `        | PO Number:               |                       |                     |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |     |             |         |
| Fax No:                                                                                                      |                              | 418++-++         |          | Invoice Ph/Fax:          |                       |                     |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     | .17 |             |         |
| E-mail: brians@esnw.com                                                                                      |                              |                  |          | Invoice E-mail:          |                       |                     |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     | i   |             |         |
| Report Delivery: (Choose all that an<br>Mail / Fax / Eprail                                                  | pply)<br>/ Post              | ed Online        |          | Data p<br>Web L          | osted<br>ogin I       | to on<br>D:         | line acc            | ount: | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / NO          |     |     |             |         |
| Special Instructions:                                                                                        |                              | )                |          |                          |                       |                     |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |     |             |         |
| Requested TAT: (Rush must be pre-<br>Standard RUSH ( 5                                                       | R / 24                       | HR)              | Tem      | perati                   | ure upo               | n Recei             | ipt: /s             | 5,39  | Ċ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |     |     |             |         |
| Project Name: Williams Crossin                                                                               | g                            |                  |          |                          | £                     |                     | Analysis Requested  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |     |             |         |
| Project Number: ES-9532.01                                                                                   |                              | nplec            | npled    | , x                      | taine                 |                     |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |     |             |         |
| AmTest ID Client ID<br>(35 characters m                                                                      | Client ID,<br>haracters max) |                  | Time Sau | Matr                     | No. of con            | CEC                 |                     |       | an management of the West of the West of the State of the |               |     |     |             | QA/QC   |
| 681 TP-1@11ft                                                                                                |                              | 12/27/23         |          |                          | 1                     |                     |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |     |             |         |
| 682 TP-2@12ft                                                                                                |                              | 12/27/23         |          |                          | 1                     | V                   |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |     |             |         |
|                                                                                                              |                              |                  |          |                          |                       |                     |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |     |             |         |
|                                                                                                              |                              |                  |          |                          |                       |                     | ·····               |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |     |             |         |
|                                                                                                              |                              |                  |          |                          |                       |                     |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |     |             |         |
|                                                                                                              |                              |                  |          |                          |                       |                     |                     |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |     |     |             |         |
|                                                                                                              |                              |                  |          |                          |                       |                     |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |     |             |         |
| Collected/Relinguished By: Dat                                                                               |                              | Time<br>24 /1:06 | Receive  | ed By:<br>KH             |                       |                     |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date<br> // / | 124 |     | Tim<br>1103 | іе<br>6 |
| Relinguished By:                                                                                             | Date                         | Time             | Receive  | ed By:                   |                       |                     |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date          |     |     | Tim         | IG.     |
| Relinquished By:                                                                                             | Date                         | Time             | Receive  | ceived By: D             |                       |                     |                     | Date  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Tim | ie  |             |         |

COMMENTS:

.9